نتایج جستجو برای: مجموعه تفاضلی هادامارد
تعداد نتایج: 28948 فیلتر نتایج به سال:
در این پایاننامه ابتدا زیر کلاسهایی از توابع محدب و توابع ستاره گون و همچنین تبدیلات ضربگری خاصی را تعریف می کنیم و به کمک خواص شمول توابع تحلیلی و عملگر انتقال، خواص هادامارد و چند خاصیت دیگر در مورد رابطه ی بین خواص شمول زیر کلاسهای خاصی از توابع تحلیلی و یک خانواده از تبدیلات ضربگری تعریف شده توسط خواص هادامارد،مطالعه می کنیم. کارهای این پایاننامه بر اساس مقاله ئ منتشر شده در سال 2010 ...
در این پایان نامه به بیان و اثبات قضایای ارگودیک غیر خطی برای نیم گروه پیوسته غیرمبسوط در فضاهای هادامارد می پردازیم. همچنین، یک قضیه همگرایی قوی برای حالتی که نیم گروه جابجایی باشد بیان می شود. نتایج بیان شده، قضایای استاندارد ارگودیک غیر خطی برای نگاشت های غیرمبسوط برروی فضاهای هیلبرت را به این دسته از نگاشت ها روی فضاهای هادامارد تعمیم می دهد که به عنوان مثال شامل مانیفلدهای کامل ریمانی و به...
نامساوی هرمیت-هادامارد یکی از نامساوی های مهمی است که توجه بسیاری از ریاضیدانان را به خود جلب کرده است. در این رساله ابتدا این نامساوی را برای تابع محدب بررسی می کنیم. سپس نامساوی هرمیت-هادامارد را برای برخی توابع محدب و شبه محدب دیفرانسیل پذیر ارائه می دهیم و کاربردهایی از میانگین های خاص را بیان می کنیم. به علاوه این نامساوی را برای تابع s-محدب نیز بررسی می کنیم، در ادامه پس از یک مطالعه ی گس...
در آنالیز کلاسیک مشتق¬پذیری توابع نقش اساسی را ایفا می¬کند. به طور کلی در آنالیز هموار توابع همه جا مشتق پذیر نیستند، اما بحث مشتق پذیری توابع در آنالیز غیر هموار کمی پیچیدتر می¬شود. دراین پایان¬نامه بر آن هستیم که به معرفی چند مشتق برای توابع تعریف شده روی یک فضای باناخ بپردازیم. در ادامه با استفاده از مشتق¬های معرفی شده مفهوم زیر مشتق را بیان می¬کنیم. هدف اصلی ما در این پایان نامه معرفی ε-ز...
دراین رساله, پس از بیان مقدمه ای کوتاه در مورد نامساوی مشهور هرمیت-هادامارد برای توابع محدب, قصد داریم مدلی عملگری از این نامساوی برای توابع عملگرمحدب ارائه دهیم. برای این منظور, ابتدا به تعاریف و قضایایی مقدماتی نیاز داریم که در فصل اول به آن ها پرداخته ایم. سپس در ادامه, ویژگی هایی از عملگرها را در فضاهای هیلبرت بیان می کنیم. پس از این مقدمات, نامساوی هرمیت-هادامارد را برای توابع محدب از عملگ...
فرض کنید i یک بازه در r باشد و f : i ? r یک تابع محدب a, b ? i و a < b باشد. نامساوی زیر به نامساوی هرمیت - هادامارد برای توابع محدب مشهور است. هدف از این پایان نامه مطالعه نامساوی هرمیت - هادامارد برای توابع تعریف شده روی یک دیسک در صفحه r2 است. که در دو حالت بررسی می شود که حالت اول برای توابع محدب و حالت دوم برای توابع لیپشیش می باشد.
در این پایان نامه آزمونی را برای آنکه مجموعه های با چگالی صفر دارای مجموعه تفاضلی با چگالی صفر باشند ارایه میدهد. همچنین مفهومی تحت عنوان زیرسایه افکنی در سیسستم های دینامیکی ارایه می شود.
در این پایان نامه اندازه ی فازی? فضای اندازه ی فازی? توابع اندازه پذیر فازی و انتگرال فازی و قضایای مربوط به آن بیان شده و چندین نامساوی و انتگرال فازی مانند نامساوی پرکوپا – لیندلر، نامساوی ینسین? نامساوی چی بی شف و نامساوی استولارسکی برای انتگرال های فازی نشان داده می شود. بالاخره نامساوی هرمیت – هادامارد برای انتگرال های فازی بر اساس مقاله ی. j . caballero et al چاپ 2009 و نامساوی مارکف ب...
تهنقش گذاری بهینه تصاویر با استفاده از الگوریتم کرم شبتاب ترکیبی برای انتخاب بلوکها و حدود آستانه
تهنقشگذاری روشی برای جاسازی تهنقش درون یک تصویر دیجیتال به منظور حفاظت از حق طبع و نشر آن است. تهنقش میبایستی دارای دو خاصیت متضاد شفافیت و مقاومت باشد. دو عامل عمدهٔ بهبود این دو پارامتر مکان جاسازی تهنقش و تعیین حدود آستانه بهینه برای جاسازی تهنقش در تصاویرمیباشند. در این مقاله یک روش تهنقشگذاری جدید و مقاوم در دامنه تبدیل هادامارد ارائه شده است که جهت انتخاب بلوکها و حدود آستانه من...
رفیزیک, بیشینه یا کمینه کردن انرژی از دید کاربردی از اهمیت فراوانی برخوردار است. که با هدف کم کردن هزینه ها یا دیگر اهداف صورت می گیرد. در این تحقیق، به دنبال بهینه کردن انرژی حالت یا اولین مقدار ویژه ی عملگر لاپلاسین روی ناحیه $dsubsetmathbb{r}^{2}$ هستیم که به مسائل بهینه سازی شکلی معروف هستند. بدنبال بهترین شکل برای ناحیه هستیم که انرژی حالت، بهینه شود. ناحیه اصلی $d$ می باشد که در آ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید