نتایج جستجو برای: قضایای نقطه ثابت شیفر و شاودر

تعداد نتایج: 761102  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر 1392

‏هدف اصلی این رساله بیان و اثبات تعمیم هایی از قضیه نقطه ثابت باناخ برای توابع و توابع مجموعه مقدار است. کاربرد هایی از این قضایا در اثبات وجود و منحصر به فردی جواب معادلات دیفرانسیل‏، معادلات انتگرال و معادلات ماتریسی آورده شده است. همچنین ‏نسخه ای از اصل انقباض باناخ در مجموعه های متعامد ثابت شده است.

پایان نامه :دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1389

در این جا یک عملگر انبساطی و دیگری انقباضی میباشد و کاربرد ها هم مورد بررسی قرار میگیرند

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان - دانشکده علوم ریاضی 1392

در این پایان نامه ابتدا به معرفی فضاهای متری مخروطی کامل می پردازیم و سپس برخی از قضایای نقطه ثابت را که در فضاهای متری (معمولی) برقرار است برای فضاهای متری مخروطی بیان و اثبات می کنیم. در ادامه از این حقیقت بهره می گیریم که تحت شرایطی یک فضاهای متری مخروطی(x,d) مترپذیر است یعنی متر? وجود دارد که (x,d) و (?x,) دنباله های کوشی و دنباله های همگرای یکسان دارند. لذا برخی از قضایای نقطه ثابت در فضاه...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده علوم انسانی 1390

در این پایان نامه ابتدا به معرفی فضاهای d- متریک و ساختار توپولوژی روی آن پرداخته هم چنین ویژگی های توپولوژی روی این فضاها را بررسی می کنیم. پس از آن با آوردن مثال هایی نشان می دهیم که اساس ادعاهای (دهاگه) مرتبط با ساختار توپولوژی این فضاها نادرست است و لذا بسیاری از نتایج مرتبط با این فضاها رد شده و فضای متریک تعمیم یافته اصلاح شده ای به نام فضای g- متریک معرفی می شود و برخی قضایای نقطه ثابت د...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شاهد - دانشکده علوم پایه 1391

در این پایان نامه با معرفی نگاشت های فازی انقباضی و نگاشت های بطور یکنواخت پیوسته به بررسی وجود و یکتایی نقاط ثابت در این نوع توابع می پردازیم. در ادامه با معرفی نگاشت های سازگار در فضاهای متریک فازی یک قضیه نقطه ثابت را برای چهار نگاشت سازگار از نوع (i) و (ii)مورد بررسی قرار می دهیم. در نهایت یک شکل فازی از قضیه نقطه ثابت لیف شیتز ارائه می گردد

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده علوم پایه 1390

در این پایان نامه شرایط خاص برای وجود نقطه ثابت مشترک برای توابع مجموعه مقدار f و g روی فضاهای متریک مرتب کامل (x,<=,d) می پردازیم. همپنین یک اثبات ساده از قضیه نقطه ثابت ندلر و قضیه نقطه ثابت باناخ ارائه می دهیم و با در نظر گرفتن شرایطی به وجود و یکتایی نقطه ثابت در توابع مجموعه ای مقدار می پردازیم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز 1388

در این مقاله به اثبات قضایای نقطه ثابت برای دسته جدیدی از نگاشتهای غیر خطی موسوم به نگاشتهای مرکزدار پرداخته ایم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شیخ بهایی - دانشکده ریاضی و کامپیوتر 1390

نظر به اهمیت قضایای نقطه ثابت در ریاضیات، موضوع اصلی این پژوهش بررسی این قضایا برای یک خانواده از نگاشت‏های چند مقداری تعریف شده روی حاصلضرب فضاهای برداری توپولوژیک هاوسدورف می‏باشد. با استفاده از این قضایا، برخی قضایای عنصر بیشین برای خانواده‏ای از نگاشت‏های چند مقداری را نتیجه می‏گیریم. به عنوان کاربرد نتایج، قضیه وجود تعادل برای اقتصاد مجرد غیر فشرده را ثابت می‏کنیم. نتایج این پژوهش نتایج شن...

پایان نامه :دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1388

این پایان نامه از سه قسمت تشکیل شده است. در قسمت اول مفاهیمی چون مخرط و فضای متریک مخروطی معرفی می شوند و قضایای نقطه ثابت برای توابع انقباضی روی این فضا ثابت می شوند. علیرغم توسعه های متنوع اخیر، قضایای از این نوع را می توان برای بررسی رده ای وسیع از مسایل در زمینه های مختلفی مانند، سیستم های کنترل بهینه غیر خطی، رمزگشایی تصاویر فراکتالی ، همگرایی شبکه های بازگشتی و... بکار گرفت. بعنوان یک کار...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده ریاضی 1392

در این پایان نامه به بررسی وجود نقطه ی ثابت برای رده ای از نگاشت ها که تعمیم هایی از انقباض ها هستند می پردازیم. ویژگی همه ی این نگاشت ها آن است که تکرارهای پیکارد برای آن ها همگرا به نقطه ی ثابت نگاشت می شود. این بررسی ها ابتدا در فضای متریک معمولی و سپس در فضا های متریک با ترتیب جزئی، متریک برداری و نهایتاً فضاهای متریک مخروطی انجام شده است.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید