نتایج جستجو برای: عملگر لیوویل
تعداد نتایج: 2402 فیلتر نتایج به سال:
در این رساله ابتدا به معرفی عملگر خودالحاق l می پردازیم که به صورت l =d/dx (p(x) d/dx) + r(x); lu + φ(x)u = 0. مشخص می شود، و مسئله مقدار ویژه lu + λp(x) = 0, x ∋ (a,b), (1) با شرایط مرزی مجزا α1u(a) + α2u′(a) = 0 |α1| + |α2 > 0, β1u(b) + β2u′(b) = 0 |β1| + |β2| > 0. را مسئله ی اشتورم - لیوویل نامیده و آن را به دو صورت منظم و منفرد مورد بررسی قرار می دهیم. ثابت می کنیم که اگر مقادیر وی...
در این پایان نامه، مسائل طیفی وارون برای عملگر اشتورم- لیوویل روی گراف d- ستاره و تعیین دسته دیفرانسیل از داده های طیفی درونی مورد مطالعه قرار می گیرد. ابتدا تعیین دسته دیفرانسیل از داده های طیفی درونی بررسی می شود. ما اثبات می کنیم که : با معلوم بودن p(x) یا q(x) روی بازه ی [0,?] می توانیم با داشتن مجموعه ی مقادیر توابع ویژه در نقطه ی میانی [0,?]...
عملگر های مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبه دلخواه می باشد. معادله دیفرانسیل با مشتقات نسبی) (pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادله دیفرانسیل با مشتقات نسبی کسری ( (fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای بدست آوردن یک طرح عددی، مشتقات...
در این پایان نامه شرایط کافی برای وجود و یا یکتایی جواب میانی شبه تقریباً دوره ای وزن دار برای رده ای از معادلات دیفرانسیل کسری نیم خطی به فرم d_( t)^? u(t)=au(t)+d_( t)^(?-1) f(t,u(t) ),t?r بیان شده که در آن 1??<2 ، d_( t)^? عملگر مشتق کسری است که در حالت ریمان- لیوویل در نظر گرفته می شود، a?d(a)?x?x یک عملگر خطی بسته به طور چگال تعریف شده از نوع بخشی است، x یک فضای باناخ مختلط است و f? r×x?x ی...
در این مقالهمسئله با مقادیر مرزی اشتورم-لیوویل، قضیه نقطه ثابت، ...
در این رساله دستگاه معادلات دیفرانسیل خطی مرتبه اول egin{eqnarray*} frac{dy_{1}}{dt}=( i ho r_{2}(t)+frac{p(t)}{i ho r_{1}(t)})y_{2} , qquad frac{dy_{2}}{dt}= i hofrac{1}{r_{1}(t)}y_{1} , quad tin[a,b] end{eqnarray*} را در نظر می گیریم که در آن توابع حقیقی $r_{1}$ و $r_{2}$ می توانند صفرهایی درون $(a,b)$ داشته باشند. در ابتدا با تعویض متغیرهای مناسبی، دستگاه فوق را به یک ...
مسایل اشتورم-لیوویل کسری که به مسایل مقدار ویژه موسوم هستند در خیلی از مسایل فیزیک، مهندسی و ریاضیات کاربردی ظاهر می شوند.بنابراین این مسایل که در کانون توجه ریاضیدانان و فیزیکدانان قرار گرفته است برای اولین بار حدود 170 سال قبل معرفی شدند. در این پایان نامه به معرفی مسایل اشتورم-لیوویل کسری شامل معادلات دیفرانسیل کسری از مرتبه دلخواه آلفا می پردازیم.مشتق و انتگرال ریمن-لیوویل و مشتقات کاپوتو ...
در این مقاله ما یک مدل ریاضی مناسب برای واکنش ارتعاشی سدها بدست می آوریم. با بکار گیری مدل پرتو برشی (مدلsb )، ما یک فرمول ریاضی را که یک معادله با مشتق جزئی است ارائه و آن را به یک معادله استورم- لیوویل تبدیل می کنیم.
در حال حاضر محاسبات کسری مورد توجه بسیاری از پژوهشگران قرار گرفته است ، همچنین معادلات دیفرانسیل کسری در رشته های مختلف علوم مانند مکانیک ، فیزیک ، زیست شناسی و مهندسی به کار برده می شود . به علت افزایش کاربرد این دسته از معادلات توجه ویژه ای به روش های عددی و دقیق معادلات دیفرانسیل کسری شده است . اخیراً استفاده از ماتریس های عملیاتی از مرتبه کسری برای حل معادلات دیفرانسیل کسری توسعه پیدا کرده ...
چکیده در این پایان نامه به مطالعه مساله مقدار مرزی ناپیوسته با وجود تاخیر و شرایط انتقال در نقاط ناپیوسته می پردازیم. روی بازه بسته [[0,?مساله l(q,?;?,?,?)را در نظر می گیریم: y^? (x)+q(x)y(x-?(x))+?^2 y(x)=0,x?(0,?/2)?(?/2,?), که دارای شرایط مرزی {?(y(0) cos??+y^ (0) sin??=0, @y(?) cos??+y^ (?) sin??=0,?,??[0,?), ? )? با شرایط انتقال {?( y(?/2-0)=?y(?/2+0), @y^ (?/2-0)=?y^ (?/...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید