نتایج جستجو برای: رنگ آمیزی کنگورد
تعداد نتایج: 20100 فیلتر نتایج به سال:
وارد شدن رنگ دانه های آلی در ساختار مزوپورها افزون بر حذف آن ها به وسیله ی بر جذب، می تواند سیستم های هیبریدی ایجاد کند که در زمینه های حسگری، شناساگری، لیزر و الکترونیک نوری به کار روند. در این پژوهش از مزوپور41- MCMو رنگ دانه ی کنگورد (CR) با اعمال شرایط مناسب سیستم های41- CR/MCM تهیه شد. از روشهای BET، DRS ،UV-Vis ،XRD و FTIR در بررسی ویژگی های ساختاری ترکیبها استفاده شد. برای بررسی نقش س...
در این رساله، تعدادی نانوساختار روی اکسید به دو روش هیدروترمال و تابش دهی امواج مایکروویو در حضور و عدم حضور چند مایع یونی ([4m-py]+c2f3o2- [(mim)2oct]+2.2br-،[(mim)2pr]+2.2br-، 2[n-(n-but)4]+ [c2h4(oh)2(co2)2]2- [(mim)c17h35]+br- و [(mim)2pr]+2.2oh- سنتز، و محصول به وسیله روش های دستگاهی پراش اشعه ایکس و میکروسکوپ الکترونی، شناسایی و طیف نشری آن ها مقایسه شد. هم چنین لایه نازک روی اکسید بر روی...
رنگ آمیزی گراف فازی یکی از مهم ترین مسائل بهینه سازی ترکیبیاتی است. بسیاری از مثال های عملی مانند جدول زمانی، خوشه بندی شبکه ها و کنترل نور ترافیک را می توان به عنوان مسأله رنگ آمیزی مدل بندی کرد. مسأله رنگ آمیزی فازی متشکل از تعیین عدد رنگی از یک گراف فازی و تابع رنگ آمیزی مرتبط با آن است. در این پژوهش، ابتدا مفاهیم و مقدمات اولیه فازی بیان می شود، سپس گراف فازی و مکمل آن توضیح داده می...
گراف های t-تام چنگک آزاد رده مهمی از گراف ها را تشکیل می دهند. با استفاده از یک الگوریتم با زمان چند جمله ای می توان گراف های t-تام چنگک آزاد را تشخیص داد.
در این پایان نامه به مفهوم عدد رنگی کامل یک گراف g، ?(g) ، می پردازیـم. این مفهوم بـرای اولیـن بار توسط فرانک هراری، هدتنیـمی و پرنس در سال 1967مطرح شد. کوچکتـرین عدد صحیح مثبت k که گراف g گرافی -kرنگ پذیر باشد را عدد رنگی گراف g گوییم و آن را با نماد ?(g) نشان می دهیم. بزرگترین عدد صحیح مثبت k که گرافg دارای یک -k رنگ آمیزی کامل باشد را عدد رنگی کامل گراف g می گوییم وآن را با نماد?(g) نشان می ...
در تین پایان نامه هدف بررسی عدد رنگی و رنگ امیزی نگاشتهای مختلف در فضاهاتی مختلف از جمله نگاشتهای پیوسته و همسانریختی ها در فضاهای مثل فضاهای نرمال پیوسته و اقلیدسی است.
در این رساله به بررسی گراف های تمام رنگ پذیر و خصوصیات آن ها می پرازیم. در بعضی از گراف های خاص درستی حدس رنگ آمیزی کلی را نشان می دهیم و کران های بالایی برای عدد رنگی کلی مطرح می کنیم. مبحث اصلی مورد مطالعه در این رساله، بررسی گراف های یکتا رنگ پذیر کلی می باشد. حدس مهمی که در این زمینه مطرح می شود دلالت بر این دارد که تنها گراف های تهی، مسیرها و دورهای از مرتبه ی 3k، k یک عدد طبیعی است، در رد...
فرض کنیم (g=(v,eیک گراف ساده با مجموعه رئوس (v(gو مجموعه یال های (e(gباشد. vرارأسی دلخواه در gدر نظر میگیریم که واقع بر یال eباشد. زوج (v,e)را یک وقوع در گراف می نامیم. مجموعه ی همه ی وقوع ها در گراف را با(i(g نمایش می دهیم. دو وقوع مجزای (v,e) و (w,f)را در گراف مجاور گوییم هرگاه یکی از حالات زیر رخ دهد: الف) v=w: ب)e=f: ج)یال vw برابر با e یا f باشد. رنگ آمیزی وقوع در گراف را نگاشتی از مجموع...
اگر gیک گراف ساده متناهی باشد و برای راس vیک مجموعه(لیست) متناهی از رنگ ها تخصیص داده شده باشد، مساله اصلی پیدا کردن شرایطی است که تحت آن شرایط بتوان گراف gرا با این تخصیص لیستی طوری رنگ آمیزی کرد که رئوس مجاور رنگ متمایز دریافت کنند.شرط لازم برای چنین رنگ آمیزی شرط هال نامیده می شود.
برای یک رنگ آمیزی یالی داده شده با رنگ های {1,2,...,k}، یک رنگ آمیزی راسی از گراف g با رنگ های {1,2,...,k} را سازگار با رنگ آمیزی یالی می گوییم هرگاه برای هر یال از g، رنگ های ظاهر شده روی دو سر آن و رنگ خود یال یکسان نباشند. به کوچکترین k ای که برای هر رنگ آمیزی یالی با kـ رنگ {1,2,...,k} یک رنگ آمیزی سازگار با این رنگ آمیزی یالی و با استفاده از رنگ های{1...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید