نتایج جستجو برای: جبر چپ متقارن

تعداد نتایج: 9811  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان خراسان رضوی - دانشکده علوم 1390

در سال 1955 سینگر و ورمر [32] اثبات کردند که : برد هر اشتقال کراندار بر یک جبر باناخ جابجایی در داخل رادیکال ژاکوبسون آن قرار می گیرد. که به قضیه سینگر-ورمر شهرت یافت. در سال 1988 توماس [34] قضیه سینگر-ورمر را با حذف شرط کراندار بودن هر اشتقاق، تعمیم داد که به حدس سینگر-ورمر شهرت دارد. در سال 1991 ماتیو و مورفی [23] نشان دادند که قضیه کلینیک -شیرکوف (قضیه 2-3-5) برای هر اشتقاق کراندار دلخواه...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده علوم 1388

در این رساله ما تعریف جدیدی از فضای فوریه روی یک ابرگروه فشرده ی موضعی ارایه می دهیم و ثابت می کنیم که آن یک زیرفضای باناخ از جبر فوریه – استیلیس روی آن ابرگروه است. این تعریف باتعریف امینی و مدقالچی هنگامیکه ابرگروه مورد نظر یک ابرگروه تانسوری باشد منطبق است و همچنین با تعریف رم که تنها برای ابرگروه های فشرده می باشد انطباق دارد. ثابت می کنیم که دوگان جبر فوریه روی یک ابرگروه برابر است با جبر ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی 1393

هدف از این پژوهش، بررسی میانگین پذیری ضعیف برخی جبرهای باناخ است. در ابتدا، نشان می دهیم که اگر a یک جبر باناخ باشد، که واحد تقریبی کراندار چپ داشته و همچنین یک ایده آل چپ در **a باشد، آن گاه برای هر 2m+1 ، m >1-میانگین پذیری ضعیف a از میانگین پذیری ضعیف a نتیجه می شود. در ادامه، به بررسی موضوعات مرتبط با میانگین پذیری و میانگین پذیری ضعیف مدول های توسعه یافته از جبرهای باناخ می پردازیم. سپس، ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شاهد - دانشکده علوم پایه 1390

فرض کنیم g گروهی توپولوژیک و جبر باناخ*(luc(g ، دوگان *c-جبر جابجایی از توابع بطور یکنواخت پیوسته چپ کراندار روی گروه g، باشد. مرکز توپولوژیک آن را برای گروههای نه لزوما موضعا فشرده را مورد بررسی قرار می دهیم. در نهایت نتایجی برای مرکز توپولوژیک فشرده سازی(g(luc اثبات می کنیم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده ریاضی و کامپیوتر 1392

فرض کنیم x یک فضای باناخ حقیقی باشد . ثابت می کنیم که اگر یک عملگر مثبت ، متقارن ، یک به یک و اکیداً نامنفرد از x به توی دوگانش وجود داشته باشد آنگاه یا x با یک فضای هیلبرت یکریخت می باشد یا شامل یک زیر فضای متمم شده غیر بدیهی است که با یک فضای هیلبرت یکریخت می باشد . همچنین ما به مورد غیر متقارن نیز خواهیم پرداخت .

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود - دانشکده علوم ریاضی 1396

در این پایان نامه ابتدا به بیان مفاهیم مقدماتی هندسه ریمانی و فینسلری پرداخته ایم. سپس هندسه گروه های لی پوچتوان از رده 2 همراه با متر فینسلری ناوردای چپ را مورد مطالعه قرار می دهیم و التصاق چرند-راند، تانسور انحنا، انحنای پرچمی، تانسور ریچی و ژئودزیک این گونه فضا ها را ارائه می دهیم. در انتها به بررسی متر های راندرز از نوع بروالد روی گروه های لی ?? بعدی پوچتوان از رده 2می پردازیم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم پایه 1392

دراین پایان نامه با استفاده از جبر جردن اقلیدسی به مطالعه الگوریتم نقطه درونی تعقیب مسیر اولیه-دوگان برای مسائل بهینه سازی متقارن و مسائل مکمل خطی روی مخروط های متقارن می پردازیم. الگوریتم های پیشنهاد شده هر کدام بر پایه ی شیوه ای جدید برای یافتن جهت های جستجو استوار هستند. این الگوریتم ها در هر تکرار فقط از گام های کامل نسترو-تاد استفاده می کنند. در پایان بهترین کران تکرار رایج برای روش های ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده علوم 1390

ساختار بدن انسان در ظا هر متقارن به نظر می رسد، ا ما ا ندام های داخلی مثل قلب، کلیه و... به صورت نا-متقارن قرار گرفته ا ند. ساختار مغز نیز در ظا هر متقا ر ن به نظر می رسد ولی دو نیمکره ی مغزی از دیدگاه عملکردی به صورت نا متقارن فعالیت می کنند. این نامتقارن بودن مغز ممکن است بر بسیاری از مهارت های شناختی نظیر حافظه، پردازش اطلاعات و تظاهر فعالیت های نیمکره ها موثر باشد. در کل نتایج بدست آمده حاک...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان - دانشکده ریاضی و کامپیوتر 1392

یک جبر گلفند-مازور عبارت است از یک جبر a روی میدان f همراه با توپولوژیt به طوری که اعمال جبری پیوسته بلشد و برای هر ایده آل مدولار ماکسیمال چپ یا راست mاز a، a/m به طور توپولوژیکی با میدان f یکریخت باشد. در این پایان نامه به بررسی خواص پایه ای جبرهای گلفند-مازور می پردازیم. از آن جمله ایده آل های مدولار ماکسیمال و مختلط سازی جبرهای گلفند-مازور حقیقی را عنوان می کنیم. به علاوه اگر (a,b) یک زوج ا...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز 1389

میانگین پذیری دوگان دوم یک جبر باناخ aمیانگین پذیری جبر باناخaرا نتیجه می دهد.اما تاکنون مثالی ارائه نشده است که نشان دهد میانگین پذیری ضعیف دوگان دوم جبر باناخ aمیانگین پذیری ضعیف aرا نتیجه ندهد.این ویژگی برای جبر گروهی (l1(gو جبرهای فوریه (a(gزمانی که gیک گروه میانگین پذیر باشد ثابت شده است.همچنین برای جبر باناخa زمانی که a منظم آرنز باشد و هر اشتقاق از a به *aفشرده ضعیف باشد و همچنینa یک اید...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید