نتایج جستجو برای: جبرهای موضعا محدب ضربی

تعداد نتایج: 2372  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی 1387

در این پایان نامه مفهوم میانگین پذیری چپ و میانگین پذیری مشخصه ای چپ جبرهای باناخ را معرفی می کنیم و به مقایسه ی آن ها با میانگین پذیری جبرهای باناخ و میانگین پذیری چپ جبرهای لایو می پردازیم. در ادامه شرایط معادل متعددی را برای این مفهوم بیان می کنیم و به بررسی ویژگی های موروثی آن می پردازیم. همچنین نشان می دهیم میانگین پذیری مشخصه ای چپ جبرهای گروهی l1(g) و (g) با میانگین پذیری گروه موضعا فشرد...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه 1393

فرض کنیم x یک فضای فشرده ی هاوسدورف و a یک جبر یکنواخت طبیعی بر x باشد. فرض کنی?_a (f)م طیف f?a باشد. یکی از اهداف ما تعمیم قضیه ی مولنار به صورت زیر است: فرض کنیم ?:a?a نگاشتی پویا باشد که در شرط زیر صدق کند: ?(fg)=?(?(f)?(g) ) (?f,g?a) در این صورت یک همسانریختی a:x?x وجود دارد به طوری که ?(f)(?(x) )=(?(1_x ) )(x)f(x) (? f?a,? x?x) هدف دیگر ما تعمیم قضیهی مولنار و تعمیم قضیه ی رائو و روی ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بجنورد - دانشکده علوم پایه 1392

این پایان نامه به بحث در مورد شبه bck-جبرهای شبه ضربی موضعی می پردازد. در این پایان نامه در فصل اول ابتدا تعاریف اولیه ای از ساختارهای مرتبط و سپس تعاریف و مثال هایی از bck-جبرهای کرندار و جابجایی آورده شده است و در ادامه تعاریف و ویژگی های شبه bck-جبرها و خاصیت شبه ضربی آن ها ارائه شده و سیستم های استنتاجی را معرفی نموده و خواص جدید سیستم های استنتاجی از شبه bck-جبر شبه ضربی ارائه نموده و مورد...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی 1386

این پایان نامه، به دنبال مشخصه ای برای جبرهای گروهی وزندار روی گروه غیر جابه جایی است. لذا نشان می دهیم که جبرهای گروهی وزندار روی گروه های گسسته و sin- گروه در صورتی میانگین پذیر ضعیف است که وزن آن کرندار قطری باشد. سپس برای هر گروه موضعا فشرده نیز نتیجه ی مشابهی را نیز ثابت می کنیم. در نهایت نشان می دهیم که میانگین پذیر ضعیف نیست.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان فارس - دانشکده علوم پایه 1392

جبر های بنیادی در سال های اخیر مورد بررسی ریاضیدانان بسیاری قرار گرفته است و بعضی از قضایای معروف جبرهای باناخ، روی این جبر ها اثبات شده است. این پایان نامه که به این جبرها می پردازد، شامل سه فصل می باشد. فصل اول، شامل تعاریف و قضایایی است که برای ارائه نتایج پایان نامه به آن ها نیاز داریم. فصل دوم شامل دو بخش است. در بخش اول، برخی تعریف ها و نتایج وابسته به جبرهای توپولوژیکی بنیادی را یاد آو...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه 1393

فرض کنیم x و y فضاهای موضعاً فشرده ی هاوسدورف باشند، a و b به ترتیب جبرهای تابعی یکنواخت بسته بر x و y باشند و t : a ?b یک نگاشت خطی - حقیقی طولپای از a بروی b باشد. در این صورت یک نگاشت پیوسته مانند k :ch(b , y) ? ? با شرط , k(ch(b , y)) ? { z ? ?: ? z ?=1}, یک زیرمجموعه ی بسته و باز ch(b , y) مانند k (که ممکن است تهی باشد.) و یک همسانریختی مانند ? : ch(b , y) ? ch(a , x) وجود دارند به طوری که ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده علوم ریاضی 1386

چکیده ندارد.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی (نوشیروانی) بابل - پژوهشکده ریاضیات 1393

فرض کنیدdیک حلقه تقسیم با مرکز f و گروه ضربی *^d باشد. در این پایان نامه ساختار زیرگروهی از زیرگروه زیرنرمال دلخواه g از *^d را مورد بررسی قرار می دهیم. به طور خاص نشان می دهیم که اگر d موضعا متناهی باشد، آنگاه g شامل یک زیرگروه آزاد غیردوری است.همچنین ساختار زیرگروه های ماکسیمال g را مورد بررسی قرار می دهیم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده علوم پایه 1390

مطالعات مربوط به نظریه ی خاصیت نقطه ی ثابت تقریبی ضعیف در فضاهای برداری توپولوژیک، [2]، توسط باروسو در سال (2009) آغاز شده است و خاصیت نقطه ی ثابت تقریبی ضعیف برای زیرمجموعه های محدب به طور ضعیف فشرده از فضاهای باناخ اثبات گردیده است. پس از آن باروسو و پی-کی-لین، [3]، در سال (2010) به بررسی این موضوع برای مجموعه های محدب، بسته و کراندار کلی از فضاهای باناخ و البته بیشتر با تاکید بر جنبه های هند...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم 1392

فرض کنیم x و y فضاهای فشرده هاسدورف بوده و a و b به ترتیب جبرهای یکنواخت بر x و y باشند.هم چنین فرض کنیم از a به b یک عملگر پوشا باشد نشان می دهیم اگر در شرط ضربی-محیطی ;b((f)(g)) = ;a(fg); صدق کند که در آن؛ ;a(f) = f 2 a(f) : jj = maxfjwj : w 2 a(f)gg; آن گاه یک یکریختی جبری طولپای از a بروی b است. یکی از نتایج این حکم این است که هر یک یکریختی جبری ?? عملگر یکانی، پوشا و ضربی که بردهای م...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید