نتایج جستجو برای: جبرهای آشیانه ای فضاهای باناخ
تعداد نتایج: 243452 فیلتر نتایج به سال:
در این رساله ابتدا قضیه ی پایداری هایرز-اولام معادله تابعی فیبوناچی را بیان می کنیم. سپس چند قضیه ی نگاشت های تقریباً جمعی را روی فضاهای 2-باناخ و نتایج مرتبط با آن بررسی می نماییم. در ادامه چند قضیه ی همریختی های تقریبی را روی 2-جبرهای باناخ ناارشمیدسی اثبات می کنیم.
فرض کنیم $ u$ یک دنباله وزنی بر $mathbb{z}$ و $varphi$ و $psi$ توابع مختلط مقدار روی $mathbb{z}$ باشند به طوری که $.varphi(mathbb{z})subseteq mathbb{z}$ در این پایان نامه، کرانداری، فشردگی و فشردگی ضعیف عملگرهای ترکیبی وزن دار $c_{psi, varphi}$ را بر پیش دوگان فضاهای باناخ $c_0(mathbb{z}, dfrac{1}{ u})$ و دوگان فضا...
مفهوم میانگین پذیری ریشه در آغاز نظریه اندازه مدرن دارد. پس از سال 1940 میانگین پذیری به یک مفهوم مهم در آنالیز هارمونیک تبدیل شد. جانسن ltrfootnote{johnson} کسی بود که نظریه میانگین پذیری جبرهای باناخ را ابداع کرد. اما مفهوم میانگین پذیری ضعیف اولین بار توسط دیلز ltrfootnote{dales} و همکارانش در cite{dales2} برای جبرهای باناخ جابجایی معرفی شد و توسط جانسن برای حالت ناجابجایی گستر...
در این پایان نامه برخی از قضایای جدید نقطه ثابت را برای نگاشت های ناگشترشی و انقباض های 1-مجموعه ای تعریف شده روی زیر مجموعه های بسته، محدب و نه لزوما کراندار از فضاهای باناخ مورد بررسی قرار می دهیم. برهان قضایا بر اساس نتیجه مهمی در رابطه با مجموعه نقاط ثابت تقریبی از یک نگاشت ناگسترشی بوده و در این میان اندازه نافشرده کوراتسکی ابزار اصلی به شمار می آید. برای تحقق بخشیدن به این نتایج مثال های...
فرض کنید $mathcal{B(X)}$ جبر شامل تمام عملگرهای خطی کراندار روی فضای باناخ $mathcal{X}$ و $phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر $A in mathcal{B(X)}$ و $x in mathcal{X}$، اسکالرهای $alpha , ...
در این رساله ابتدا روی مرکز توپولوژیکی فضاهای l(x) و m(x) و جبرهای باناخی که خود دوگان دوم یک فضای باناخ هستند کار اساسی انجام می گیرد.
چکیده یک نگاشت (نه لزوماً خطی) مانند t:x?y بین فضاهای باناخ x و y یک ایزومتری 2- موضعی نامیده می شود هرگاه برای هر f,g?a، ایزمتری خطی پوشای s:x?y موجود باشد که t(x)=s(x) و t(y)=s(y). در حالتی که a یک جبر باناخ باشد، نگاشت t:a?a خودریختی 2- موضعی نامیده می شود هرگاه برای هر f,g?a، خودریختی s روی a موجود باشد که t(f)=s(f) و t(g)=s(g). در این پایان نامه که مراجع اصلی آن [af] و [hmot] می ب...
فرض کنید یک جبر باناخ دوگان با پیش دوگان باشد. جملات زیر را در نظر بگیرید (a) کن- میانگین پذیر است. (b) یک قطر اصلی نرمال دارد. (c) یک - دومدول انژکتیو است. برای همه ها مشخص شده است که (b)، (a) را نتیجه می دهد، نشان می دهیم که (c) همواره (b) را نتیجه می دهد در حالی که عکس آن برای ، که در آن گروه موضعا فشرده نامتناهی است، نادرست است. در پایان ما تعریف یک قطر اصلی نرمال را تغییر خواهیم داد و با ...
در ابتدا به بررسی جبرهای نسبت بر روی عملگرهای وارون پذیر روی فضاهای هیلبرت می پردازیم و توسیعی ارایه خواهیم داد که این جبرها را روی فضاهای باناخ تعریف می کند وخواص آنها را بررسی خواهیم کرد. در فصل بعد جبری را معرفی می کنیم که به ازای هر عملگر روی فضای هیلبرت با بعد نامتناهی تعریف خواهد شد که آن را جبر طیفی می نامیم. نشان می دهیم که این جبر شامل جابجاگرهای آن عملگر است و در بسیاری از حالات این ش...
قضیه گلیسون-کاهانه-زلازکو بیان می دارد که چه وقتی تابعک خطی مفروض ضربی می باشد. تابعک را درجبر باناخ تقریبا ضربی می گویند هرگاه، برای ای داشته باشیم، . اگر تابعک تقریبا ضربی در جبر باناخ نزدیک به یک تابعک خطی ضربی باشد می گوییم جبر باناخ یک جبر می باشد. ادوارد جانسون ثابت کرده است که بسیاری از جبر های باناخ دارای این خاصیت می باشند. در این پایان نامه ثابت می کنیم که جبر باناخ سریهای توان...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید