نتایج جستجو برای: جبرهای آشیانه ای فضاهای باناخ

تعداد نتایج: 243452  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر 1391

در این رساله ابتدا قضیه ی پایداری هایرز-اولام معادله تابعی فیبوناچی را بیان می کنیم. سپس چند قضیه ی نگاشت های تقریباً جمعی را روی فضاهای 2-باناخ و نتایج مرتبط با آن بررسی می نماییم. در ادامه چند قضیه ی همریختی های تقریبی را روی 2-جبرهای باناخ ناارشمیدسی اثبات می کنیم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مراغه - دانشکده علوم 1384

فرض کنیم ‎$‎‎‎ u‎$‎ یک دنباله وزنی بر ‎$‎‎‎mathbb{z}‎$‎ و ‎$‎‎‎‎varphi‎‎$‎ و ‎$‎‎‎‎‎psi‎‎‎$‎ توابع مختلط مقدار روی ‎$‎‎‎mathbb{z}‎$‎ باشند به طوری که ‎$‎‎‎.‎varphi‎(mathbb{z})‎subseteq ‎mathbb{z}‎$‎‎ در‎ این پایان نامه‏، کراند‎‎اری‏، فشردگی‏ و فشردگی ضعیف عملگرهای ترکیبی وزن دار ‎$‎‎‎c_{‎psi‎‎, ‎varphi‎}‎$‎‎ را بر پیش دوگان فضاهای باناخ ‎$‎‎‎c_0(mathbb{z}, dfrac{1}{ u})‎$‎‎ و دوگان فضا...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان - دانشکده ریاضی و کامپیوتر 1391

مفهوم میانگین پذیری ریشه در آغاز نظریه اندازه مدرن دارد. پس از سال ‎1940‎ میانگین پذیری به یک مفهوم مهم در آنالیز هارمونیک تبدیل شد. جانسن ‎ltrfootnote{johnson}‎ کسی بود که نظریه میانگین پذیری جبرهای باناخ را ابداع کرد. اما مفهوم میانگین پذیری ضعیف اولین بار توسط دیلز ‎ltrfootnote{dales}‎ و همکارانش در ‎cite{dales2}‎ برای جبرهای باناخ جابجایی معرفی شد و توسط جانسن برای حالت ناجابجایی گستر...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه یاسوج - دانشکده علوم 1392

در این پایان نامه برخی از قضایای جدید نقطه ثابت را برای نگاشت های ناگشترشی و انقباض های 1-مجموعه ای تعریف شده روی زیر مجموعه های بسته، محدب و نه لزوما کراندار از فضاهای باناخ مورد بررسی قرار می دهیم. برهان قضایا بر اساس نتیجه مهمی در رابطه با مجموعه نقاط ثابت تقریبی از یک نگاشت ناگسترشی بوده و در این میان اندازه نافشرده کوراتسکی ابزار اصلی به شمار می آید. برای تحقق بخشیدن به این نتایج مثال های...

فرض کنید ‎$mathcal{B(X)}$‎ جبر شامل تمام عملگرهای خطی کران‌دار روی فضای باناخ ‎$mathcal{X}$‎ و ‎$phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$‎ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر ‎$A in mathcal{B(X)}$‎ و ‎$x in mathcal{X}$‎، اسکالرهای ‎$alpha‎ , ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت معلم تهران - دانشکده علوم 1378

در این رساله ابتدا روی مرکز توپولوژیکی فضاهای l(x) و m(x) و جبرهای باناخی که خود دوگان دوم یک فضای باناخ هستند کار اساسی انجام می گیرد.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس 1390

چکیده یک نگاشت (نه لزوماً خطی) مانند t:x?y بین فضاهای باناخ x و y یک ایزومتری 2- موضعی نامیده می شود هرگاه برای هر f,g?a، ایزمتری خطی پوشای s:x?y موجود باشد که t(x)=s(x) و t(y)=s(y). در حالتی که a یک جبر باناخ باشد، نگاشت t:a?a خودریختی 2- موضعی نامیده می شود هرگاه برای هر f,g?a، خودریختی s روی a موجود باشد که t(f)=s(f) و t(g)=s(g). در این پایان نامه که مراجع اصلی آن [af] و [hmot] می ب...

پایان نامه :دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - پژوهشکده علوم 1391

فرض کنید یک جبر باناخ دوگان با پیش دوگان باشد. جملات زیر را در نظر بگیرید (a) کن- میانگین پذیر است. (b) یک قطر اصلی نرمال دارد. (c) یک - دومدول انژکتیو است. برای همه ها مشخص شده است که (b)، (a) را نتیجه می دهد، نشان می دهیم که (c) همواره (b) را نتیجه می دهد در حالی که عکس آن برای ، که در آن گروه موضعا فشرده نامتناهی است، نادرست است. در پایان ما تعریف یک قطر اصلی نرمال را تغییر خواهیم داد و با ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران) - دانشکده ریاضی و کامپیوتر 1386

در ابتدا به بررسی جبرهای نسبت بر روی عملگرهای وارون پذیر روی فضاهای هیلبرت می پردازیم و توسیعی ارایه خواهیم داد که این جبرها را روی فضاهای باناخ تعریف می کند وخواص آنها را بررسی خواهیم کرد. در فصل بعد جبری را معرفی می کنیم که به ازای هر عملگر روی فضای هیلبرت با بعد نامتناهی تعریف خواهد شد که آن را جبر طیفی می نامیم. نشان می دهیم که این جبر شامل جابجاگرهای آن عملگر است و در بسیاری از حالات این ش...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور مرکز - دانشکده علوم پایه 1390

قضیه گلیسون-کاهانه-زلازکو بیان می دارد که چه وقتی تابعک خطی مفروض ضربی می باشد. تابعک را درجبر باناخ تقریبا ضربی می گویند هرگاه، برای ای داشته باشیم، . اگر تابعک تقریبا ضربی در جبر باناخ نزدیک به یک تابعک خطی ضربی باشد می گوییم جبر باناخ یک جبر می باشد. ادوارد جانسون ثابت کرده است که بسیاری از جبر های باناخ دارای این خاصیت می باشند. در این پایان نامه ثابت می کنیم که جبر باناخ سریهای توان...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید