نتایج جستجو برای: تابع محدب هندسی
تعداد نتایج: 29755 فیلتر نتایج به سال:
تابع یک به یک را تک ارز می نامند از نظر تحلیلی تابع تک ارز مشتق مخالف صفر دارد واز نظر هندسی تابع تک ارز خم های ساده را به خم های ساده می نگارد.در این پایان نامه به بررسی زیر رده های از رده ی توابع تقریبا محدب که به عنوان زیر رده ی از توابع تک ارز است می پردازیم. در این راستا فصل اول به بیان تعاریف وقضایایی اختصاص داده شده است که در فصول بعد مورد نیاز است فصل دوم به معرفی زیر رده ای از رده ی ...
برای هر تابع حقیقی مقدار $f$ می توان تابع ماتریس مقدار $f(x)$ متناظر را روی ماتریس های خودالحاق با اثر $f$ روی مقادیر ویژه ی $x$ در تجزیه ی طیفی آن تعریف کرد. توابع ماتریسی نقش به سزایی را در محاسبات علمی و مهندسی ایفا می کنند. از جمله مثال های معروف از توابع ماتریسی می توان به تابع $sqrt{x}$ (تابع ریشه ی دوم یک ماتریس مثبت) و تابع $e^x$ (تابع نمایی از یک ماتریس مر...
محاسبه مقادیر دقیق معیار ایده آل و ضدایده آل موضوع مهمی در مسائل برنامه ریزی خطی چند معیاره (molp)است. در واقع این مقادیر به عنوان کران های پایین و بالا روی مجموعه نقاط نامغلوب تعریف می شوند. هرچند تعیین نقطه ایده آل یک کار آسانی است، چون آن معادل با بهینه سازی یک تابع محدب (تابع خطی) روی یک مجموعه محدب است که یک مساله بهینه سازی محدب است، اما محاسبه نقطه ضدایده آل در molp با یک مساله بهینه سا...
در این پایان نامه شرایط دقیق ستاره گونی برای توابع تحلیلی با مشتقات کراندار بررسی شده است و همچنین برد مجموعه همچنین برد مجموعه { zf′(z)/f(z) ;z∈d,f ∈λj} مورد مطالعه قرار می گیرد.که در آن jλ توابع تحلیلی نرمالیزه در ریسک واجد با شرط | f′(z) - 1 | ≤ λ هدف اصلی این پایان نامه تعمیم قضیه (3.2.4) و فراهم آوردن راههای مختلف برای بدست آوردن کران دقیق برای توابع ستاره گون است.
هدف اصلی این رساله، بررسی نامساوی های انتگرالی در چارچوب اندازه های یکنوا و انتگرال های غیرخطی است. برای این منظور، در ابتدا شکل جدید نامساوی هرمیت-هادامارد مربوط به توابع مقعر و توابع محدب حاصل ضربی را به دست می آوریم. سپس نامساوی های از نوع جنسن برای توابع مقعر را در حوزه اندازه های یکنوا بررسی می کنیم. در ادامه نامساوی جدیدی از نوع ساندور برای توابع مقعر و نامساوی جدیدی از نوع هادامارد برای ...
مطالعه ی خواص جداسازی مجموعه های رادیان (ستاره گون در مبدأ) در سالهای اخیر مورد توجه روزافزونی قرار گرفته است، ابتدا در فضاهای اقلیدسی [14 و 20] و فضاهای با بعد نامتناهی [23 و 24] بررسی شده اند. در آنجا نشان داده شده که هر نقطه ی که به مجموعه ی بسته و رادیان (در یک فضای نرمدار ) تعلق ندارد را می توان با یک تابع فوق خطی پیوسته ی تعریف شده روی تفکیک کرد، به طوری که و به ازای هر . این نتیجه را م...
اب با ?ک نگاشت چندمقداره از مرتبه?ی کمتر به منظور مطالعه و وجود جواب?های آن استفاده خواه?م کرد. بد?ن منظور از روش?های توپولوژ?ک? و ?کنوا?? برای بدست آوردن وجود و .جواب?ها?? از خواص? مثل نابرابری شبه?تغ??رات? استفاده خواه?م کرد در ا?ن پا?ان?نامه ما به پ?دا کردن جواب?ها?? از نابرابری تغ??رات? و شبه تغ??رات? به شکل ز?ر م??پرداز?م ?u ? d(j) : ?a(u),v ? u? + ?f(u),v ? u? + j(v) ? j(u) ? 0 ?v ?...
با استفاده از ضرایب بسط توابع تحلیلی در مبدأ، آزمون هایی برای ستاره گونی تعیین می شوند و آنها را در جهت ستاره گونی تابع فوق هندسی گاوس بکار برده و نتایج قبلی را بهبود می بخشیم و نتایج حاصله را در مورد رده خاصی از توابع تحلیلی بکار خواهیم برد.
نامساوی استراوسکی یکی از نامساویهای کاربردی است که دانشمندان سعی در تعمیم آن داشته ودارند.در این رساله ابتدا این نامساوی را اثبات وسپس آن را برای توابع s-محدب وهمچنین توابعی با مشتق s-محدب نوع دوم تعمیم میدهیم.ودر نهایت کاربردهایی از این نامساوی را برای میانگینهای خاص ازجمله میانگین حسابی ومیانگین تعمیم یافته لگاریتمی بیان و اثبات مینماییم.
آنالیز ناهموار منتسب به آنالیزی بدون مشتق پذیری است که می توان به عنوان زیرمجموعه ای از آنالیز غیرخطی در نظر گرفت. منشا این آنالیز در اوایل 1970 می باشد، هنگامی که نظریه پردازان کنترلی و برنامه ریزان غیرخطی در جستجوی حل مسائل بهینه سازی برای توابع غیرهموار بودند. در آنالیز ناهموار به معرفی مفاهیم جدیدی که زیردیفرانسیل نامیده می شود پرداخته و آنرا جایگزین مشتق نموده است. از جمله زیردیفرانسیل های...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید