نتایج جستجو برای: ε nsga ii
تعداد نتایج: 594723 فیلتر نتایج به سال:
This paper presented a parallel hybrid electric vehicle (HEV) equipped with a hybrid energy storage system. To handle complex energy flow in the powertrain system of this HEV, a fuzzy-based energy management strategy was established. A chaotic multi-objective genetic algorithm, which optimizes the parameters of fuzzy membership functions, was also proposed to improve fuel economy and HC, CO, an...
The evolutionary approach in the design optimisation of MEMS is a novel and promising research area. The problem is of a multi-objective nature; hence, multi-objective evolutionary algorithms (MOEA) are used. The literature shows that two main classes of MOEA have been used in MEMS evolutionary design Optimisation, NSGA-II and MOGA-II. However, no one has provided a justification for using eith...
Optimal design problem are widely known by their multiple performance measures that are often competing with each other. In this paper, an optimal multiproduct batch chemical plant design is presented. The design is firstly formulated as a multiobjective optimization problem, to be solved using the well suited non dominating sorting genetic algorithm (NSGA-II). The NSGA-II have capability to ac...
Monitoring design is a problem of paramount importance to the environmental engineering field because environmental observation data provide the sole means of assessing if engineered systems are successfully protecting human and ecologic health. The monitoring design problem is extremely challenging because it requires environmental engineers to capture an impacted system’s governing processes,...
To solve single and multi-objective optimization problems, evolutionary algorithms have been created. We use the non-dominated sorting genetic algorithm (NSGA-II) to find Pareto front in a two-objective portfolio query, its extended variant NSGA-III three-objective problem, this article. Furthermore, both we quantify Karush-Kuhn-Tucker Proximity Measure (KKTPM) for each generation determine how...
using new approaches to optimize the process of power transmission line routing can solve many complex problems which power transmission line routing decision-makers are faced. due to the expansion of involved parameters we can consider multi-objective evolutionary algorithms as appropriate method in this area. in this thesis with using multi-objective evolutionary algorithms nsga-ii and offere...
distribution centers (dcs) play important role in maintaining the uninterrupted flow of goods and materials between the manufacturers and their customers.this paper proposes a mathematical model as the bi-objective capacitated multi-vehicle allocation of customers to distribution centers. an evolutionary algorithm named non-dominated sorting ant colony optimization (nsaco) is used as the optimi...
Modern this paper proposes non dominated sorting genetic algorithm (NSGA-II) which has feature of adaptive crowding distance for finding optimal location and sizing of Static Var Compensators (SVC) in order to minimize real power losses and voltage deviation and also to improve voltage profile of a power system at the same time. While finding the optimal location and size of SVC, single line ou...
This paper presents an application of elitist Non-dominated Sorting Genetic Algorithm (NSGA-II), to efficiently schedule a set of independent tasks in a heterogeneous distributed computing system. This scheduling problem is a bi-objective problem considering two objectives. The first objective is minimization of makespan and the second one being the minimization of flowtime. As a multi-objectiv...
Abstract. This paper examines the effect of crossover operations on the performance of EMO algorithms through computational experiments on knapsack problems and flowshop scheduling problems using the NSGA-II algorithm. We focus on the relation between the performance of the NSGA-II algorithm and the similarity of recombined parent solutions. First we show the necessity of crossover operations t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید