نتایج جستجو برای: total variation regularizer
تعداد نتایج: 1064242 فیلتر نتایج به سال:
We consider total variation (TV) minimization for manifold-valued data. We propose a cyclic proximal point algorithm and a parallel proximal point algorithm to minimize TV functionals with -type data terms in the manifold case. These algorithms are based on iterative geodesic averaging which makes them easily applicable to a large class of data manifolds. As an application, we consider denoisin...
in this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of tvd (total variation diminishing) of the solution, is proposed. this scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. schemes preserving the essential physical property of tvd are of great importance in practice. such s...
The 1-norm was proven to be a good convex regularizer for the recovery of sparse vectors from under-determined linear measurements. It has been shown that with an appropriate measurement operator, a number of measurements of the order of the sparsity of the signal (up to log factors) is sufficient for stable and robust recovery. More recently, it has been shown that such recovery results can be...
A new understanding of the notion of regularizer is proposed. It is argued that this new notion is more realistic than the old one and better fits the practical computational needs. An example of the regularizer in the new sense is given. A method for constructing regularizers in the new sense is proposed and justified. PACS numbers: 02.30.Tb, 02.60.Jh Mathematics Subject Classification: 47A52,...
It is a challenging task to reconstruct images from their noisy, blurry, and/or incomplete measurements, especially those with important details and features such as medical magnetic resonance (MR) and CT images. We propose a novel regularization model that integrates two recently developed regularization tools: total generalized variation (TGV) by Bredies, Kunisch, and Pock; and shearlet trans...
Regularization approaches have demonstrated their effectiveness for solving ill-posed problems. However, in the context of variational restoration methods, a challenging question remains, namely how to find a good regularizer. While total variation introduces staircase effects, wavelet domain regularization brings other artefacts, e.g. ringing. However, a trade-off can be made by introducing a ...
In multi-class support vector machine (MSVM) for classification, one core issue is to regularize the coefficient vectors to reduce overfitting. Various regularizers have been proposed such as `2, `1, and trace norm. In this paper, we introduce a new type of regularization approach – angular regularization, that encourages the coefficient vectors to have larger angles such that class regions can...
One major challenge in training Deep Neural Networks is preventing overfitting. Many techniques such as data augmentation and novel regularizers such as Dropout have been proposed to prevent overfitting without requiring a massive amount of training data. In this work, we propose a new regularizer called DeCov which leads to significantly reduced overfitting (as indicated by the difference betw...
Structural learning with forgetting is an established method of using Laplace regularization to generate skeletal artificial neural networks. In this paper we develop a continuous dynamical system model of regularization in which the associated regularization parameter is generalized to be a time-varying function. Analytic results are obtained for a Laplace regularizer and a quadratic error sur...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید