نتایج جستجو برای: t reesei

تعداد نتایج: 704029  

2017
Elena Antonov Ivan Schlembach Lars Regestein Miriam A Rosenbaum Jochen Büchs

BACKGROUND Although the biocatalytic conversion of cellulosic biomass could replace fossil oil for the production of various compounds, it is often not economically viable due to the high costs of cellulolytic enzymes. One possibility to reduce costs is consolidated bioprocessing (CBP), integrating cellulase production, hydrolysis of cellulose, and the fermentation of the released sugars to the...

Journal: :Applied and environmental microbiology 1998
S P Goller D Schoisswohl M Baron M Parriche C P Kubicek

Cell extracts of Trichoderma reesei exhibited dibasic endopeptidase activity toward the carboxylic side of KR, RR, and PR sequences. This activity was stimulated by the presence of Ca2+ ions and localized in vesicles of low bouyant density; it therefore exhibited some similarity to yeast Kex2. Analytical chromatofocusing revealed a single peak of activity. The dibasic endopeptidase activity was...

2011
M Carmen Limón Tiina Pakula Markku Saloheimo Merja Penttilä

BACKGROUND Cellulase and hemicellulase genes in the fungus Trichoderma reesei are repressed by glucose and induced by lactose. Regulation of the cellulase genes is mediated by the repressor CRE1 and the activator XYR1. T. reesei strain Rut-C30 is a hypercellulolytic mutant, obtained from the natural strain QM6a, that has a truncated version of the catabolite repressor gene, cre1. It has been pr...

2016
Lauri Reuter Anneli Ritala Markus Linder Jussi Joensuu

Hydrophobin fusion technology has been applied in the expression of several recombinant proteins in plants. Until now, the technology has relied exclusively on the Trichoderma reesei hydrophobin HFBI. We screened eight novel hydrophobin tags, T. reesei HFBII, HFBIII, HFBIV, HFBV, HFBVI and Fusarium verticillioides derived HYD3, HYD4 and HYD5, for production of fusion proteins in plants and puri...

Journal: :Biotechnology and bioengineering 2016
Linda Lehmann Nanna P Rønnest Christian I Jørgensen Lisbeth Olsson Stuart M Stocks Henrik S Jørgensen Timothy Hobley

Trichoderma reesei expresses a large number of enzymes involved in lignocellulose hydrolysis and the mechanism of how these enzymes work together is too complex to study by traditional methods, for example, by spiking with single enzymes and monitoring hydrolysis performance. In this study, a multivariate approach, partial least squares regression, was used to see whether it could help explain ...

2014
Alexander Lichius Verena Seidl-Seiboth Bernhard Seiboth Christian P Kubicek

Trichoderma reesei is a model for investigating the regulation of (hemi-)cellulase gene expression. Cellulases are formed adaptively, and the transcriptional activator XYR1 and the carbon catabolite repressor CRE1 are main regulators of their expression. We quantified the nucleo-cytoplasmic shuttling dynamics of GFP-fusion proteins of both transcription factors under cellulase and xylanase indu...

Journal: :Biotechnology and bioengineering 1999
A Tholudur W F Ramirez J D McMillan

The enzyme cellulase, a multienzyme complex made up of several proteins, catalyzes the conversion of cellulose to glucose in an enzymatic hydrolysis-based biomass-to-ethanol process. Production of cellulase enzyme proteins in large quantities using the fungus Trichoderma reesei requires understanding the dynamics of growth and enzyme production. The method of neural network parameter function m...

Journal: :Applied and environmental microbiology 1996
K M Kleman-Leyer M Siika-Aho T T Teeri T K Kirk

Degradation of cotton cellulose by Trichoderma reesei endoglucanase I (EGI) and cellobiohydrolase II (CBHII) was investigated by analyzing the insoluble cellulose fragments remaining after enzymatic hydrolysis. Changes in the molecular-size distribution of cellulose after attack by EGI, alone and in combination with CBHII, were determined by size exclusion chromatography of the tricarbanilate d...

2017
Peng Zhan Jingjing Sun Fang Wang Lin Zhang Jienan Chen

Enzymatic saccharification is a key step in the green conversion of lignocellulose to biofuels and other products. A key deficiency in common biocatalytic systems, such as Trichoderma reesei, is the insufficient presence of β-glucosidase (BGL). This study intended to develop an efficient process of BGL production as an enhancement to the T. reesei system. The authors investigated the process op...

2011
Mathieu Bey Jean-Guy Berrin Laetitia Poidevin Jean-Claude Sigoillot

BACKGROUND Cellobiose dehydrogenase (CDH) is an extracellular hemoflavoenzyme produced by lignocellulose-degrading fungi including Pycnoporus cinnabarinus. We investigated the cellulolytic system of P. cinnabarinus, focusing on the involvement of CDH in the deconstruction of lignocellulosic biomass. RESULTS First, P. cinnabarinus growth conditions were optimized for CDH production. Following ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید