نتایج جستجو برای: speaker transformation
تعداد نتایج: 242055 فیلتر نتایج به سال:
In this Present study, the technique of wavelet transform and neural network were developed for speech based text-dependent and text0independent speaker identification. 390 feature were fed to feed-forward back propagation neural network for classification The function of feature extraction and classification are performed using wavelet and neural network system. The declared result shows that ...
1 ABSTRACT A speaker adaptation strategy is described that is based on nding a subset of speakers, from the training set, who are acoustically close to the test speaker, and using only the data from these speakers (rather than the complete training corpus) to re-estimate the system parameters. Further, a linear transformation is computed for every one of the selected training speakers to better...
Adapting the parameters of a statistical speaker-independent continuous-speech recognizer to the speaker and the channel can significantly improve the recognition performance and robustness of the system. In continuous mixture-density hidden Markov models the number of component densities is typically very large, and it may not be feasible to acquire a sufficient amount of adaptation data for r...
Speaker adaptation of deep neural networks (DNN) is difficult, and most commonly performed by changes to the input of the DNNs. Here we propose to learn discriminative feature transformations to obtain speaker normalised bottleneck (BN) features. This is achieved by interpreting the final two hidden layers as speaker specific matrix transformations. The hidden layer weights are updated with dat...
This paper proposes a density model transformation for speaker recognition systems based on i–vectors and Probabilistic Linear Discriminant Analysis (PLDA) classification. The PLDA model assumes that the i-vectors are distributed according to the standard normal distribution, whereas it is well known that this is not the case. Experiments have shown that the i–vector are better modeled, for exa...
Recognizing a person’s identity by voice is one of intrinsic capabilities for human beings. Automatic speaker recognition (SR) is a computational task for computers to perform a similar task, i.e., to recognize human identity based on voice characteristics. By taking a voice signal as input, automatic speaker recognition systems extract distinctive information from the input, usually using sign...
Maximum a posteriori adaptation method combines the prior knowledge with adaptation data from a new speaker, which has a nice asymptotical property, but has a slow adaptation rate for not modifying unseen models. In a strictly Bayesian approach, prior parameters are assumed known, based on common or subjective knowledge. But a practical solution is to adopt an empirical Bayesian approach, where...
We propose to use a new feature transformation (FT) function to construct supervectors of support vector machines for speaker recognition. Considering that estimation of bias vectors is more robust than that of transformation matrices, we define the FT function in a flexible form that transformation matrices and bias vectors are controlled by separate regression classes. Unlike the MLLR-based a...
In this paper, we introduce new rapid adaptation techniques that extend and improve two successful methods previously introduced, cluster weighting (CW) and MAPLR. First, we introduce a new adaptation scheme called CWB which extends the cluster weighting adaptation method by including a bias term and a reference speaker model. CWB is shown to improve the adaptation performance as compared to CW...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید