نتایج جستجو برای: solid oxide fuel cells

تعداد نتایج: 1746284  

2006
D. Beckel A. R. Studart L. J. Gauckler

Spray pyrolysis has been used to prepare La0.6 Sr0.4Co0.2Fe0.8O3-δ thin film cathodes for solid oxide fuel cell (SOFC) applications. The films are polycrystalline with nano-meter sized grains and less than 1 μm in thickness. Deposition parameters for film deposition have been established. The ratio of deposition temperature to solvent boiling point is found to be the most important processing p...

2017
Yusuke Shiratori Takeo Yamakawa Mio Sakamoto Hinomi Yoshida Takuya Kitaoka Quang Tuyen Tran Duc Chanh Tin Doan Mau Chien Dang

Citation: Shiratori Y, Yamakawa T, Sakamoto M, Yoshida H, Kitaoka T, Tran QT, Doan DCT and Dang MC (2017) Biogas Production from Local Biomass Feedstock in the Mekong Delta and Its Utilization for a Direct Internal Reforming Solid Oxide Fuel Cell. Front. Environ. Sci. 5:25. doi: 10.3389/fenvs.2017.00025 Biogas Production from Local Biomass Feedstock in the Mekong Delta and Its Utilization for a...

, ,

Nanotechnology is well used in the development and performance improvement of solid oxide fuel cells (SOFCs). The high operating temperature of SOFCs (700-900 ° C) has led to serious shortcomings in their overall performance and durability. Hence, the high operating temperature has been reduced to the average temperature range of approximately 44-700 Celsius, which has improved performance and ...

2015
Yoshio Matsuzaki Yuya Tachikawa Takaaki Somekawa Toru Hatae Hiroshige Matsumoto Shunsuke Taniguchi Kazunari Sasaki

Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilutio...

2009
Albert Tarancón

Lowering the operating temperature of solid oxide fuel cells (SOFCs) to the intermediate range (500–700 oC) has become one of the main SOFC research goals. High operating temperatures put numerous requirements on materials selection and on secondary units, limiting the commercial development of SOFCs. The present review first focuses on the main effects of reducing the operating temperature in ...

2007
Steven C. DeCaluwe Huayang Zhu Robert J. Kee Gregory S. Jackson

A one-dimensional button-cell model is developed and applied to explore the influence of anode microstructure on solid oxide fuel cell (SOFC) performance. The model couples porous-media gas transport and elementary electrochemical kinetics within a porous Ni-YSZ cermet anode, a dense YSZ electrolyte membrane and a composite LSM-YSZ cathode. In all cases the fuel is humidified H2 and air is the ...

2011
Evan C. Brown Taesik Oh Aron Varga Mary Louie

As the pursuit towards emissions reduction intensifies with growing interest and nascent technologies, solid oxide fuel cells (SOFCs) remain an illustrious candidate for achieving our goals. Despite myriad advantages, SOFCs are still too costly for widespread deployment, even as unprecedented materials developments have recently emerged. This suggests that, in addition to informed materials sel...

2004
A. M. AZAD

During the last three decades, a large number of investigations has been reported pertaining to the science and technology of solid oxide fuel cells (SOFCs) based mainly on the yttria-stabilized zirconia (YSZ) electrolyte. Because of the problems associated with the high temperature of operation ( ,-~ 1 000 ~ of the YSZ-based cells, there has been a substantial effort to develop alternative ele...

2014
Guoliang Xiao Fanglin Chen

*Correspondence: Fanglin Chen, Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA e-mail: [email protected] Solid oxide fuel cells (SOFCs) can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conv...

In this study the characteristics of two different kinds of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) powders, one in-house synthesized powder by a co-precipitation method and another one purchased from Fuel Cell Materials Co. (FCM Co., USA), were compared. The co-precipitated powder was prepared by using ammonium carbonate as precipitant with a NH4+/NO3- molar ratio of 2 and calcination at 1000C for 1 h....

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید