نتایج جستجو برای: singular value decomposition

تعداد نتایج: 859282  

Journal: :INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 2018

Journal: :ITM web of conferences 2021

Singular value decomposition (SVD) is one of the most useful matrix decompositions in linear algebra. Here, a novel application SVD recovering ripped photos was exploited. Recovery done by applying truncated iteratively. Performance evaluated using Frobenius norm. Results from few experimental were decent.

2006

The canonical variates can be calculated from the eigenvectors of the within-group sums of squares and cross-products matrix. However, G03ACF calculates the canonical variates by means of a singular value decomposition (SVD) of a matrix V . Let the data matrix with variable (column) means subtracted be X and let its rank be k; then the k by (ng 1) matrix V is given by: V 1⁄4 QXQg; where Qg is a...

Journal: :Indian Journal of Science and Technology 2010

Journal: :Proceedings of the National Academy of Sciences 2003

Journal: :Zeitschrift für Analysis und ihre Anwendungen 2020

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید