نتایج جستجو برای: schrödinger equations
تعداد نتایج: 251516 فیلتر نتایج به سال:
Conservation properties of a full discretization via a spectral semi-discretization in space and a Lie-Trotter splitting in time for cubic Schrödinger equations with small initial data (or small nonlinearity) are studied. The approximate conservation of the actions of the linear Schrödinger equation, energy, and momentum over long times is shown using modulated Fourier expansions. The results a...
A mapping between the stationary solutions of nonlinear Schrödinger equations with real and complex potentials is constructed and a set of exact solutions with real energies are obtained for a large class of complex potentials. As specific examples we consider the case of dissipative periodic soliton solutions of the nonlinear Schrödinger equation with complex potential.
In this paper we develop a local discontinuous Galerkin method to solve the generalized nonlinear Schrödinger equation and the coupled nonlinear Schrödinger equation. L stability of the schemes are obtained for both of these nonlinear equations. Numerical examples are shown to demonstrate the accuracy and capability of these methods. 2004 Elsevier Inc. All rights reserved. MSC: 65M60; 35Q55
We prove unique continuation properties for solutions of evolution Schrödinger equation with time dependent potentials. In the case of the free solution these correspond to uncertainly principles referred to as being of Morgan type. As an application of our method we also obtain results concerning the possible concentration profiles of solutions of semi-linear Schrödinger equations.
A well known result of Jaffard states that an arbitrary region on a torus controls, in the L sense, solutions of the free stationary and dynamical Schrödinger equations. In this note we show that the same result is valid in the presence of a potential, that is for Schrödinger operators, −∆ + V , V ∈ C∞.
We study the action of metaplectic operators on Wiener amalgam spaces, giving upper bounds for their norms. As an application, we obtain new fixed-time estimates in these spaces for Schrödinger equations with general quadratic Hamiltonians and Strichartz estimates for the Schrödinger equation with potentials V (x) = ±|x|.
Recently, Dorey and Tateo have investigated functional relations among Stokes multipliers for a Schrödinger equation (second order differential equation) with a polynomial potential term in view of solvable models. Here we extend their studies to a restricted case of n + 1−th order linear differential equations. ∗e-mail: [email protected]
Bose-Einstein condensation is usually modeled by nonlinear Schrödinger equations with harmonic potential. We study the Cauchy problem for these equations. We show that the local problem can be treated as in the case with no potential. For the global problem, we establish an evolution law, which is the analogue of the pseudo-conformal conservation law for the nonlinear Schrödinger equation. With...
Firstly, the Markovian stochastic Schrödinger equations are presented, together with their connections with the theory of measurements in continuous time. Moreover, the stochastic evolution equations are translated into a simulation algorithm, which is illustrated by two concrete examples — the damped harmonic oscillator and a two-level atom with homodyne photodetection. Then, we consider how t...
We consider examples of discrete nonlinear Schrödinger equations in Z admitting ground states which are orbitally but not asymptotically stable in l(Z). The ground states contain internal modes which decouple from the continuous modes. The absence of leaking of energy from discrete to continues modes leads to an almost conservation and perpetual oscillation of the discrete modes. This is quite ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید