نتایج جستجو برای: robust coloring problem
تعداد نتایج: 1064111 فیلتر نتایج به سال:
We study a certain relaxation of the classic vertex coloring problem, namely, a coloring of vertices of undirected, simple graphs, such that there are no monochromatic triangles. We give the first classification of the problem in terms of classic and parametrized algorithms. Several computational complexity results are also presented, which improve on the previous results found in the literatur...
Given an n-vertex graph G and two positive integers d, k ∈ N, the (d, kn)-differential coloring problem asks for a coloring of the vertices of G (if one exists) with distinct numbers from 1 to kn (treated as colors), such that the minimum difference between the two colors of any adjacent vertices is at least d. While it was known that the problem of determining whether a general graph is (2, n)...
This paper presents a Constraint Programming-based Column Generation approach to the Minimum Graph Coloring problem. The proposed approach has two versions of the pricing subproblems: the first version formulates the pricing subproblem as the optimization problem of finding the most negative reduced cost column, the second version as the decision problem of finding a maximal stable set with neg...
A graph G is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest integer k for which such a coloring exists is known as the equitable chromatic number of G and it is denoted by χ=(G). In this paper the problem of determinig the value of equitable chromatic number for multic...
We investigate a coloring problem, called ordered coloring, in grids and some other families of grid-like graphs. Ordered coloring (also known as vertex ranking) has applications, among other areas, in efficient solving of sparse linear systems of equations and scheduling parallel assembly of products. Our main technical results improve upper and lower bounds for the ordered chromatic number of...
A coloring of a graph G is an assignment of colors to the vertices of G such that any two vertices receive distinct colors whenever they are adjacent. An acyclic coloring of G is a coloring such that no cycle of G receives exactly two colors, and the acyclic chromatic number χA(G) of a graph G is the minimum number of colors in any such coloring of G. Given a graph G and an integer k, determini...
The k-Coloring problem is to decide whether a graph can be colored with at most k colors such that no two adjacent vertices receive the same color. The List k-Coloring problem requires in addition that every vertex u must receive a color from some given set L(u) ⊆ {1, . . . , k}. Let Pn denote the path on n vertices, and G + H and rH the disjoint union of two graphs G and H and r copies of H, r...
A k-edge-coloring of a graph G = (V, E) is a function c that assigns an integer c(e) (called color) in {0, 1, · · · , k−1} to every edge e ∈ E so that adjacent edges get different colors. A k-edge-coloring is linear compact if the colors incident to every vertex are consecutive. The problem k − LCCP is to determine whether a given graph admits a linear compact k-edge coloring. A k-edge-coloring...
This article focuses on register assignment problems for heterogeneous register-set VLIW-DSP architectures. It is assumed that an instruction schedule has already been generated. The register assignment problem is equivalent to the well-known coloring of an interference graph. Typically, machine-related constraints are mapped onto the structure of the interference graph. Thereby favorable chara...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید