نتایج جستجو برای: ring homomorphism
تعداد نتایج: 126083 فیلتر نتایج به سال:
We define the cohomological Burnside ring B(G,M) of a finite group G with coefficients in a ZG-module M as the Grothendieck ring of the isomorphism classes of pairs [X, u] where X is a G-set and u is a cohomology class in a cohomology group H X(G,M). The cohomology groups H ∗ X(G,M) are defined in such a way that H∗ X(G, M) ∼= ⊕iH∗(Hi,M) when X is the disjoint union of transitive G-sets G/Hi. I...
Let G be a finite group. It is well known that a Mackey functor {H 7→ M(H)} is a module over the Burnside ring functor {H 7→ Ω(H)}, where H ranges over the set of all subgroups of G. For a fixed homomorphism w : G → {−1, 1}, the Wall group functor {H 7→ Ln(Z[H], w|H)} is not a Mackey functor if w is nontrivial. In this paper, we show that the Wall group functor is a module over the Burnside rin...
Given a closed monotone symplectic manifold M , we define certain characteristic cohomology classes of the free loop space LHam(M, ω) with values in QH∗(M) , and their S1 equivariant version. These classes generalize the Seidel representation and satisfy versions of the axioms for Chern classes. In particular there is a Whitney sum formula, which gives rise to a graded ring homomorphism from th...
The quotient of a triangulated category modulo a subcategory was defined by Verdier. Motivated by the failure of the telescope conjecture, we introduce a new type of quotients for any triangulated category which generalizes Verdier’s construction. Slightly simplifying this concept, the cohomological quotients are flat epimorphisms, whereas the Verdier quotients are Ore localizations. For any co...
We study the transfer homomorphism in modular invariant theory paying particular attention to the image of the transfer which is a proper non-zero ideal in the ring of invariants. We prove that, for a p-group over Fp whose ring of invariants is a polynomial algebra, the image of the transfer is a principal ideal. We compute the image of the transfer for SLn(Fq) and GLn(Fq) showing that both ide...
The purpose of this paper is to introduce and discuss the concept of T-rough (prime, primary) ideal and T-rough fuzzy (prime, primary) ideal in a commutative ring . Our main aim in this paper is, generalization of theorems which have been proved in [6, 7, 11]. At first, T-rough sets introduced by Davvaz in [6]. By using the paper, we define a concept of T-rough ideal , T-rough quotient ideal an...
Following the last talk on graph homomorphisms, we continue to discuss some examples of graph homomorphisms. But this time we will focus on some models, that is, the homomorphism G → H for the graph H with fixed weights. The main reference is Section 1 in [2].
We show that if a graph H is k-colorable, then (k−1)-branching walks on H exhibit long range action, in the sense that the position of a token at time 0 constrains the configuration of its descendents arbitrarily far into the future. This long range action property is one of several investigated herein; all are similar in some respects to chromatic number but based on viewing H as the range, in...
The purpose of this paper is to address a number of issues raised by Avramov and Miller in a recent paper [1]. Let (R,m, k) be a Noetherian local ring of characteristic p > 0 with residue field k, and let φ : R → R be the the Frobenius homomorphism defined by φ(a) = a. For r ≥ 1, we denote by φrR the R-module structure on R via φ. That is, for a ∈ R and b ∈ φ r R, a · b = a r b. When R is a reg...
In the following, we describe a way of factoring polynomials in Fq[X] with Drinfeld modules. We furthermore analyse the complexity of the algorithm and compare it to the well-known Cantor-Zassenhaus algorithm. 1. Defining Fq[X ]-module structures with Drinfeld modules Throughout this paper we will denote A = Fq[X ], where q is a power of some prime p, and N ∈ A for the polynomial which is to be...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید