نتایج جستجو برای: restricted lasso

تعداد نتایج: 122288  

2005
Baha Y. Mirghani Michael E. Tryby Derek A. Baessler Nicholas Karonis Ranji S. Ranjithan Kumar G. Mahinthakumar

A Large Scale Simulation Optimization (LASSO) framework is being developed by the authors. Linux clusters are the target platform for the framework, specifically cluster resources on the NSF TeraGrid. The framework is designed in a modular fashion that simplifies coupling with simulation model executables, allowing application of simulation optimization approaches across problem domains. In thi...

2011
Marco F. Duarte Waheed U. Bajwa Robert Calderbank

In many linear regression problems, explanatory variables are activated in groups or clusters; group lasso has been proposed for regression in such cases. This paper studies the nonasymptotic regression performance of group lasso using `1/`2 regularization for arbitrary (random or deterministic) design matrices. In particular, the paper establishes under a statistical prior on the set of nonzer...

2015
Wenjing Yin Jelena Bradic

Classical statistical theory offers validity under restricted assumptions. However, in practice, it is a common approach to perform statistical analysis based on data-driven model selection [1], which guarantees none of results of classical statistical theory. Those results include hypothesis testings and confidence intervals which are useful tools of measuring fitness of models. Considering th...

2015
Leena Pasanen Lasse Holmström Mikko J. Sillanpää

BACKGROUND LASSO is a penalized regression method that facilitates model fitting in situations where there are as many, or even more explanatory variables than observations, and only a few variables are relevant in explaining the data. We focus on the Bayesian version of LASSO and consider four problems that need special attention: (i) controlling false positives, (ii) multiple comparisons, (ii...

احمدزاده, مهدیه سادات, باستانی, پیوند, لطفی, فرهاد, مرادی, مرجان,

Background and Objective: The evaluation of the hospitals performance in order to improve the quality of services provided is of great importance. This study aimed to evaluate the performance of teaching hospitals affiliated to Shiraz University of Medical Sciences (SUMS) using Pabon Lasso graph before and after the implementation of the health system transformation plan. Materials and Metho...

Journal: :Molecular biology and evolution 2015
George Kettleborough Jo Dicks Ian N Roberts Katharina T Huber

The wealth of phylogenetic information accumulated over many decades of biological research, coupled with recent technological advances in molecular sequence generation, presents significant opportunities for researchers to investigate relationships across and within the kingdoms of life. However, to make best use of this data wealth, several problems must first be overcome. One key problem is ...

Journal: :Annals of statistics 2014
Richard Lockhart Jonathan Taylor Ryan J Tibshirani Robert Tibshirani

In the sparse linear regression setting, we consider testing the significance of the predictor variable that enters the current lasso model, in the sequence of models visited along the lasso solution path. We propose a simple test statistic based on lasso fitted values, called the covariance test statistic, and show that when the true model is linear, this statistic has an Exp(1) asymptotic dis...

Journal: :CoRR 2015
Xin Jiang Patricia Reynaud-Bouret Vincent Rivoirard Laure Sansonnet Rebecca Willett

Sparse linear inverse problems appear in a variety of settings, but often the noise contaminating observations cannot accurately be described as bounded by or arising from a Gaussian distribution. Poisson observations in particular are a characteristic feature of several real-world applications. Previous work on sparse Poisson inverse problems encountered several limiting technical hurdles. Thi...

2007
Jerome Friedman Trevor Hastie Holger Höfling Robert Tibshirani

We consider “one-at-a-time” coordinate-wise descent algorithms for a class of convex optimization problems. An algorithm of this kind has been proposed for the L1-penalized regression (lasso) in the lterature, but it seems to have been largely ignored. Indeed, it seems that coordinate-wise algorithms are not often used in convex optimization. We show that this algorithm is very competitive with...

Journal: :CoRR 2014
Seunghak Lee Eric P. Xing

Recently, to solve large-scale lasso and group lasso problems, screening rules have been developed, the goal of which is to reduce the problem size by efficiently discarding zero coefficients using simple rules independently of the others. However, screening for overlapping group lasso remains an open challenge because the overlaps between groups make it infeasible to test each group independen...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید