نتایج جستجو برای: random survival forest

تعداد نتایج: 698415  

2014
Silke Janitza Gerhard Tutz Anne-Laure Boulesteix

The random forest method is a commonly used tool for classification with high-dimensional data that is able to rank candidate predictors through its inbuilt variable importance measures (VIMs). It can be applied to various kinds of regression problems including nominal, metric and survival response variables. While classification and regression problems using random forest methodology have been...

ژورنال: :کومش 0
میترا منتظری mitra montazeri medical informatics research center, institute for futures studies in health, kerman university of medical sciences, kerman, iran1- دانشگاه علوم پزشکی کرمان، پژوهشکده آینده پژوهی در سلامت، مرکز تحقیقات انفورماتیک پزشکی مهدیه منتظری mahdieh montazeri research center for modeling in health, institute for futures studies in health, kerman university of medical sciences, kerman, iran3- دانشگاه علوم پزشکی کرمان، پژوهشکده آینده پژوهی در سلامت، مرکز تحقیقات مدل سازی در سلامت

سابقه و هدف: کبد مهم ترین ارگان داخلی بدن می باشد که نقش اصلی در متابولیسم بدن دارد. بیماری کبد را نمی توان به راحتی در مراحل اولیه کشف کرد زیرا کبد حتی زمانی که قسمتی از آن نیز آسیب دیده باشد به درستی کار می کند و این خود تشخیص این بیماری را مشکل می کند. ابزارهای طبقه بندی اتوماتیک به عنوان یک ابزار کمک تشخیص باعث کاهش بار کاری پزشکان می گردد. طبقه بندی هایی که به منظور تشخیص هوشمند بیماری کبد...

2016
Hui Liang Junhui Hou Junsong Yuan Daniel Thalmann

Random forest based Hough-voting techniques have been widely used in a variety of computer vision problems. As an ensemble learning method, the voting weights of leaf nodes in random forest play critical role to generate reliable estimation result. We propose to improve Hough-voting with random forest via simultaneously optimizing the weights of leaf votes and pruning unreliable leaf nodes in t...

2014
Joseph Mascaro Gregory P. Asner David E. Knapp Ty Kennedy-Bowdoin Roberta E. Martin Christopher Anderson Mark Higgins K. Dana Chadwick

Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus). The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such a...

Kozegar, Ehsan, Moshrefzadeh, Sadegh, Ravaei, Bahman,

Background: Diabetes is the fourth leading cause of death in the world. And because so many people around the world have the disease, or are at risk for it, diabetes can be called the disease of the century. Diabetes has devastating effects on the health of people in the community and if diagnosed late, it can cause irreparable damage to vision, kidneys, heart, arteries and so on. Therefore, it...

2011
Weilong Yang

We consider the multi-label classification problem in this paper. We propose a randomized ensemble learning algorithm, random tag forest, which is an ensemble of random tag trees. Each tree is built by randomly defining a hierarchical tree structure over a subset of tag vocabulary. Each node in the tree corresponds to a tag in the vocabulary. During testing, a testing example will pass through ...

2014
Natalia Kuznetsova

Classification is the process of assigning a class label to an observation based on its proprieties or attributes. A classification algorithm is applied to a data set, producing a model. By studying the model, insights about the data set structure can be gained. The benefits that a model can bring depend on the model. In this work, a Random Forest model is used for the analysis of data. A Rando...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید