(i) ∥x1, x2, . . . , xn∥ = 0 if any only if x1, x2, . . . , xn are linearly dependent, (ii) ∥x1, x2, . . . , xn∥ is invariant under any permutation, (iii) ∥x1, x2, . . . , axn∥ = |a| ∥x1, x2, . . . , xn∥, for any a ∈ R (real), (iv) ∥x1, x2, . . . , xn−1, y + z∥ = ∥x1, x2, . . . , xn−1, y∥ + ∥x1, x2, . . . , xn−1, z∥ is called an n-norm on X and the pair (X, ∥•, . . . , •∥) is called n-normed li...