نتایج جستجو برای: particle swarm optimization team formation problem social networks single
تعداد نتایج: 3359827 فیلتر نتایج به سال:
In recent years, the static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks, genetic algorithms (GAs), particle swarm optimization, etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile networks [mobile ad hoc networks (MANETs)], wireless sensor net...
In this age of wireless communication, micro strip antennas have drawn maximum attention of antenna community because of its compact size, light weight and low profile configuration. In this paper the problem of locating feed point of an inset fed microstrip patch antenna designed for wireless communication is dealt with. The optimization is done using three techniques: Genetic Optimization (GA...
This paper presents a new approach using Combined Artificial Neural Network (CANN) module for daily peak load forecasting. Five different computational techniques –Constrained method, Unconstrained method, Evolutionary Programming (EP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) – have been used to identify the CANN module for peak load forecasting. In this paper, a set of ne...
This paper presents a new optimization model – EPSO, Evolutionary Particle Swarm Optimization, inspired in both Evolutionary Algorithms and in Particle Swarm Optimization algorithms. The fundamentals of the method are described, and an application to the problem of Loss minimization and Voltage control is presented, with very good results.
This chapter reviews biologically inspired algorithms for solving a class of difficult combinatorial optimization problems known as vehicle routing problems, where least cost collection or delivery routes are designed to serve a set of customers in a transportation network. From a methodological standpoint, the review includes evolutionary algorithms, ant colony optimization, particle swarm opt...
This study aims to forecast Iran's electricity demand by using meta-heuristic algorithms, and based on economic and social indexes. To approach the goal, two strategies are considered. In the first strategy, genetic algorithm (GA), particle swarm optimization (PSO), and imperialist competitive algorithm (ICA) are used to determine equations of electricity demand based on economic and social ind...
The author proposes an extension of particle swarm optimization (PSO) for solving interval-valued optimization problems and applies the extended PSO to evolutionary training of neural networks (NNs) with interval weights. In the proposed PSO, values in the genotypes are not real numbers but intervals. Experimental results show that interval-valued NNs trained by the proposed method could well a...
As we all know, the parameter optimization of Mamdani model has a defect of easily falling into local optimum. To solve this problem, we propose a new algorithm by constructing Mamdani Fuzzy neural networks. This new scheme uses fuzzy clustering based on particle swarm optimization (PSO) algorithm to determine initial parameter of Mamdani Fuzzy neural networks. Then it adopts PSO algorithm to o...
Based on the life cycle cost (LCC) approach, this paper presents an integral mathematical model and particle swarm optimization (PSO) algorithm for the heating system planning (HSP) problem. The proposed mathematical model minimizes the cost of heating system as the objective for a given life cycle time. For the particularity of HSP problem, the general particle swarm optimization algorithm was...
A Particle Swarm Optimization (PSO) algorithm is examined to solve the inverse problem in structural health monitoring. The damage detection problem is formulated as a PSO problem to find a damaged stiffness matrix that satisfies the structure’s eigenequation and satisfying the necessary symmetry, sparsity, positive definiteness, and damage localization constraints. Finally, the PSO technique i...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید