نتایج جستجو برای: para holomorphic sectional curvature
تعداد نتایج: 517034 فیلتر نتایج به سال:
If D is a bounded convex domain in C , then the work of Lempert [L] and Royden-Wong [RW] (see also [A]) show that given any point p ∈ D and any non-zero tangent vector v ∈ C at p, there exists a holomorphic map φ:U → D from the unit disk U ⊂ C into D passing through p and tangent to v in p which is an isometry with respect to the hyperbolic distance of U and the Kobayashi distance of D. Further...
The pseudo-Riemannian manifold M = (M, g), n ≥ 2 is paraquaternionic Kähler if hol(M) ⊂ sp(n,R)⊕sp(1, R). If hol(M) ⊂ sp(n, R), than the manifold M is called para-hyperKähler. The other possible definitions of these manifolds use certain parallel para-quaternionic structures in End(TM), similarly to the quaternionic case. In order to relate these different definitions we study para-quaternionic...
This note is about the geometry of holomorphic foliations. Let X be a polynomial vector field with isolated singularities on C2. We announce some results regarding two problems: 1. Given a finitely curved orbit L of X, under which conditions is L algebraic? 2. If X has some non-algebraic finitely curved orbit L what is the classification of X? Problem 1 is related to the following question: Let...
In the context of paracontact geometry, η-Ricci solitons are considered on manifolds satisfying certain curvature conditions: R(ξ,X) · S = 0, S · R(ξ,X) = 0, W2(ξ,X) · S = 0 and S · W2(ξ,X) = 0. We prove that on a para-Kenmotsu manifold (M,φ, ξ, η, g), the existence of an η-Ricci soliton implies that (M, g) is quasi-Einstein and if the Ricci curvature satisfies R(ξ,X) · S = 0, then (M, g) is Ei...
We introduce an evolution equation which deforms metrics on 3-manifolds with sectional curvature of one sign. Given a closed 3-manifold with an initial metric with negative sectional curvature, we conjecture that this flow will exist for all time and converge to a hyperbolic metric after a normalization. We shall establish a monotonicity formula in support of this conjecture. Note that in contr...
The first part of this paper is devoted to proving a comparison theorem for Kähler manifolds with holomorphic bisectional curvature bounded from below. The model spaces being compared to are CP, C, and CH. In particular, it follows that the bottom of the spectrum for the Laplacian is bounded from above by m for a complete, m-dimensional, Kähler manifold with holomorphic bisectional curvature bo...
ω(Ju, Jv) = ω(u, v) and ω(·, J ·) ≫ 0. The combination thus defines an associated Riemannian metric β(·, ·) = ω(·, J ·). Any symplectic manifold possesses such a structure. We will assume further that ω is ‘integral’ in the cohomological sense. This means we can find a complex hermitian line bundle L → X with hermitian connection ∇ whose curvature is −iω. Recently, beginning with Donaldson’s se...
The goal of this paper is to generalize Demailly’s asymptotic holomorphic Morse inequalities to the case of a covering manifold of a compact manifold. We shall obtain estimates which involve Atiyah’s “normalized dimension” of the square integrable harmonic spaces. The techniques used are those of Shubin who gave a proof for the usual Morse inequalities in the presence of a group action relying ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید