نتایج جستجو برای: novel tubular architectures
تعداد نتایج: 867761 فیلتر نتایج به سال:
In chronic kidney disease (CKD), progressive nephron loss causes glomerular sclerosis, as well as tubulointerstitial fibrosis and progressive tubular injury. In this study, we aimed to identify molecular changes that reflected the histopathological progression of renal tubulointerstitial fibrosis and tubular cell damage. A discovery set of renal biopsies were obtained from 48 patients with hist...
The pathogenesis of cisplatin-induced acute kidney injury (AKI) is characterized by tubular cell apoptosis and inflammation. However, the molecular mechanisms are not fully understood. We found that CXCL16 was induced in renal tubular epithelial cells in response to cisplatin-induced AKI. Therefore, we investigated whether CXCL16 played a role in cisplatin-induced tubular cell apoptosis and inf...
The segmentation of tubular tree structures like vessel systems in volumetric datasets is of vital interest for many medical applications. We present a novel approach that allows to simultaneously separate and segment multiple interwoven tubular tree structures. The algorithm consists of two main processing steps. First, the tree structures are identified and corresponding shape priors are gene...
In this paper we present and evaluate a novel technique for generating representations of tubular objects in 3D medical data. Tubular objects are abundant in medical images, e.g., vessels, bones, ducts, spinal cords, and bowels. Tubes can be characterized as smoothly varying, yet possibly branching, structures in 3D that have nearly circular cross sections. While other techniques have been sugg...
Electrical excitability is an essential feature of cardiomyocytes and the homogenous propagation of the action potential is guaranteed by a complex network of membrane invaginations called the transverse-axial tubular system (TATS). TATS structural remodelling is a hallmark of cardiac diseases and we demonstrated that this can be accompanied by electrical defects at single T-tubular level. Usin...
During embryogenesis, blood vessels are formed initially by the process of vasculogenesis, the in situ differentiation of mesenchymal cells into endothelial cells, which form a primitive, patterned vasculogenic network. This is followed by angiogenesis, the sprouting of new vessels from preexisting vasculature, to yield a more refined microcirculation. However, we and our collaborators have rec...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید