نتایج جستجو برای: mos2 particles
تعداد نتایج: 161050 فیلتر نتایج به سال:
The identification of the active sites in heterogeneous catalysis requires a combination of surface sensitive methods and reactivity studies. We determined the active site for hydrogen evolution, a reaction catalyzed by precious metals, on nanoparticulate molybdenum disulfide (MoS2) by atomically resolving the surface of this catalyst before measuring electrochemical activity in solution. By pr...
Surface potential measurement on atomically thin MoS2 flakes revealed the thickness dependence in Schottky barriers formed between high work function metal electrodes and MoS2 thin flakes. Schottky diode devices using mono- and multi-layer MoS2 channels were demonstrated by employing Ti and Pt contacts to form ohmic and Schottky junctions respectively. Characterization results indicated n-type ...
We report the tailoring of the electrical properties of mechanically exfoliated multilayer (ML) molybdenum disulfide (MoS2) by chemical doping. Electrical charge transport and Raman spectroscopy measurements revealed that the p-toluene sulfonic acid (PTSA) imposes n-doping in ML MoS2. The shift of threshold voltage for ML MoS2 transistor was analyzed as a function of reaction time. The threshol...
In this article, we combine the homophase junction g-C3N4 prepared by recrystallization with small particles of MoS2 treated ball milling through a simple method ultrasonic assisted oil bath, which improves light absorption capacity catalyst and promotes electron transport separation efficiency electrons, photocatalyst capable efficiently degrading pollutants was prepared.
We report on the electrochemical charge storage behavior of few-layered flakes of molybdenum disulfide (MoS2) obtained by liquid phase exfoliation of bulk MoS2 powder in 1-dodecyl-2-pyrrolidinone. The specific capacitances of the exfoliated flakes obtained using a 6 M KOH aqueous solution as an electrolyte were found to be an order of magnitude higher than those of bulk MoS2 (∼0.5 and ∼2 mF cm(...
Submitted for the MAR13 Meeting of The American Physical Society Investigation of E1 2g and A1g Raman Modes of Few-Layer MoS2 on HfO2 Substrate HUI-CHUN CHIEN, JATINDER KUMAR, HSIN-YING CHIU, University of Kansas — The recent research work by Radisavljevic et al.[1] shows that the mobilities of monolayer MoS2 transistors can be improved by employing a thin layer of hafnium oxide as top-gate die...
We describe a two-step synthesis of pure multiwall MoS2 nanotubes with a high degree of homogeneity in size. The Mo6S4I6 nanowires grown directly from elements under temperature gradient conditions in hedgehog-like assemblies were used as precursor material. Transformation in argon-H2S/H2 mixture leads to the MoS2 nanotubes still grouped in hedgehog-like morphology. The described method enables...
Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have been recently proposed as appealing candidate materials for spintronic applications owing to their distinctive atomic crystal structure and exotic physical properties arising from the large bonding anisotropy. Here we introduce the first MoS2-based spin-valves that employ monolayer MoS2 as the nonmagnetic spacer. In contr...
In the increasing research field of 2D materials such as graphene, molybdenum disulfide MoS2 has attracted great interest due to the existence of a direct bandgap in monolayer MoS2, which gives the possibility of achieving MoS2 fieldeffect transistors or optoelectronic devices. We analyzed by THz time-domain spectroscopy (THz-TDS) up to 2 THz and infrared (IR) spectroscopy, CVD-obtained MoS2 us...
Utilizing ab initio random structure searching, we investigated Li adsorption on MoS2 and hydrogen molecules on Li-decorated MoS2. In contrast to graphene, Li can be adsorbed on both sides of MoS2, with even stronger binding than on the single side. We found that high coverages of Li can be attained without Li clustering, which is essential for hydrogen storage and Li ion batteries. Moreover, r...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید