نتایج جستجو برای: monomial bases
تعداد نتایج: 70225 فیلتر نتایج به سال:
We show that Stanley’s Conjecture holds for square free monomial ideals in five variables, that is the Stanley depth of a square free monomial ideal in five variables is greater or equal with its depth.
Squarefree monomial ideals arising from finite meet-semilattices and their free resolutions are studied. For the squarefree monomial ideals corresponding to poset ideals in a distributive lattice the Alexander dual is computed.
In this paper, by a modification of a previously constructed minimal free resolution for a transversal monomial ideal, the Betti numbers of this ideal is explicitly computed. For convenient characteristics of the ground field, up to a change of coordinates, the ideal of t-minors of a generic pluri-circulant matrix is a transversal monomial ideal . Using a Gröbner basis for this ideal, it is sho...
We characterize componentwise linear monomial ideals with minimal Taylor resolution and consider the lower bound for the Betti numbers of componentwise linear ideals. INTRODUCTION Let S = K[x1, . . . ,xn] denote the polynomial ring in n variables over a field K with each degxi = 1. Let I be a monomial ideal of S and G(I) = {u1, . . . ,us} its unique minimal system of monomial generators. The Ta...
In this note we give an algebraic proof of “deformation quantization” by making use of the theory of Unital Gröbner bases over a valuation ring. MSC: 16Z05,13P10 In this note we give an algebraic proof of deformation quantization (c.f. [7]). We do this be developing in (Sec. 1) the theory of unital Gröbner bases over a valuation ring. We then in (Sec. 2) obtain, almost immediately, our desired ...
We show that all monomial ideals in the polynomial ring in at most 3 variables are pretty clean and that an arbitrary monomial ideal I is pretty clean if and only if its polarization I p is clean. This yields a new characterization of pretty clean monomial ideals in terms of the arithmetic degree, and it also implies that a multicomplex is shellable if and only the simplicial complex correspond...
Let Λ be a finite-dimensional (D, A)-stacked monomial algebra. In this paper, we give necessary and sufficient conditions for the variety of a simple Λ-module to be nontrivial. This is then used to give structural information on the algebra Λ, as it is shown that if the variety of every simple module is nontrivial, then Λ is a D-Koszul monomial algebra. We also provide examples of (D, A)-stacke...
The algebra Sym of symmetric functions is a proper subalgebra of QSym: for example, M11 and M12 +M21 are symmetric, but M12 is not. As an algebra, QSym is generated by those monomial symmetric functions corresponding to Lyndon words in the positive integers [11, 6]. The subalgebra of QSym ⊂ QSym generated by all Lyndon words other than M1 has the vector space basis consisting of all monomial sy...
Monomial ideals form an important link between commutative algebra and combinatorics. In this chapter, we demonstrate how to implement algorithms in Macaulay 2 for studying and using monomial ideals. We illustrate these methods with examples from combinatorics, integer programming, and algebraic geometry.
In this paper we generalize some basic applications of Grr obner bases in commutative polynomial rings to the non-commutative case. We deene a non-commutative elimination order. Methods of nding the intersection of two ideals are given. If both the ideals are monomial we deduce a nitely written basis for their intersection. We nd the kernel of a homomorphism, and decide membership of the image....
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید