Let $G$ be a split connected reductive group over $\mathbb{Z}$. $F$ non-archimedean local field. With $K_m: = Ker(G(\mathfrak{O}_F) \rightarrow G(\mathfrak{O}_F/\mathfrak{p}_F^m))$, Kazhdan proved that for field $F'$sufficiently close to $F$, the Hecke algebras $\mathcal{H}(G(F),K_m)$ and $\mathcal{H}(G(F'),K_m')$ are isomorphic, where $K_m'$ denotes corresponding object $F'$. In this article, ...