نتایج جستجو برای: learning based optimization

تعداد نتایج: 3499596  

2014
M. Ramakrishna Murty Anima Naik J. V. R. Murthy P. V. G. D. Prasad Reddy Suresh C. Satapathy K. Parvathi

Finding the optimal number of clusters has remained to be a challenging problem in data mining research community. Several approaches have been suggested which include evolutionary computation techniques like genetic algorithm, particle swarm optimization, differential evolution etc. for addressing this issue. Many variants of the hybridization of these approaches also have been tried by resear...

2013
Alison Cozad Nikolaos V. Sahinidis David C. Miller

We address a central problem in modeling, namely that of learning an algebraic model from data obtained from simulations or experiments. We propose a methodology that uses a small number of simulations or experiments to learn models that are as accurate and as simple as possible. The approach begins by building a low-complexity surrogate model. The model is built using a best subset technique t...

2015
Dougal Maclaurin David K. Duvenaud Ryan P. Adams

Tuning hyperparameters of learning algorithms is hard because gradients are usually unavailable. We compute exact gradients of cross-validation performance with respect to all hyperparameters by chaining derivatives backwards through the entire training procedure. These gradients allow us to optimize thousands of hyperparameters, including step-size and momentum schedules, weight initialization...

Journal: :CoRR 2017
Fred Glover Jin-Kao Hao

Diversification-Based Learning (DBL) derives from a collection of principles and methods introduced in the field of metaheuristics that have broad applications in computing and optimization. We show that the DBL framework goes significantly beyond that of the more recent Opposition-based learning (OBL) framework introduced in Tizhoosh (2005), which has become the focus of numerous research init...

Journal: :مدیریت زنجیره تأمین 0
زهره کاهه رضا برادران کاظم زاده

in this paper, tender problems in an automobile company for procuring needed items from potential suppliers have been resolved by the learning algorithm q. in this case the purchaser with respect to proposals received from potential providers, including price and delivery time is proposed; order the needed parts to suppliers assigns. the buyer’s objective is minimizing the procurement costs thr...

2013
Li Cheng

We consider a similarity-score based paradigm to address scenarios where either the class labels are only partially revealed during learning, or the training and testing data are drawn from heterogeneous sources. The learning problem is subsequently formulated as optimization over a bilinear form of fixed rank. Our paradigm bears similarity to metric learning, where the major difference lies in...

2011
Carre Scheidegger Arpit Shah Dan Simon

We present hardware testing of an evolutionary algorithm known as biogeography-based optimization (BBO) and extend it to distributed learning. BBO is an evolutionary algorithm based on the theory of biogeography, which describes how nature geographically distributes organisms. We introduce a new BBO algorithm that does not use a centralized computer, and which we call dis­ tributed BBO. BBO and...

2011
Kevin Watts

Machine learning techniques and algorithms are prevalent in robotics, and have been used for computer vision, grasping, and legged walking. Reinforcement learning approaches have been developed over the past 15 years, with modern techniques using continuous action spaces for various robotic applications. Policy gradient learning allows various optimization techniques to quickly optimize robotic...

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

Journal: :Information 2016
Zong-Sheng Wu Wei-Ping Fu Ru Xue Wen Wang

The Teaching-Learning-Based Optimization (TLBO) algorithm has been proposed in recent years. It is a new swarm intelligence optimization algorithm simulating the teaching-learning phenomenon of a classroom. In this paper, a novel global path planning method for mobile robots is presented, which is based on an improved TLBO algorithm called Nonlinear Inertia Weighted Teaching-Learning-Based Opti...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید