نتایج جستجو برای: laser scribed graphene
تعداد نتایج: 233316 فیلتر نتایج به سال:
Graphene, whose absorbance is approximately independent of wavelength, allows broadband light-matter interactions with ultrafast responses. The interband optical absorption of graphene can be saturated readily under strong excitation, thereby enabling scientists to exploit the photonic properties of graphene to realize ultrafast lasers. The evanescent field interaction scheme of the propagating...
Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a ...
We found that the optimized mixture of graphene and multilayer graphene, produced by the high-yield inexpensive liquid-phase-exfoliation technique, can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300% in the graphene-based polymer at the filler loading fraction f = ...
Graphene, a two-dimensional atomic layer of carbon atoms, represents a class of nanostructures whose physical properties are strongly dependent on their morphology as well as the environment in which they exist. Aqueous media is one of the most common environments that play an important role in influencing the performance of these materials. Here, we investigate the thermal and optical properti...
Laser-Induced Graphene One of the keys to utility laser-induced graphene (LIG) is ability manufacture designed macroscopic geometries in a high-throughput manner. In article number 2301208, Hyun Kim, Sukjoon Hong, Habeom Lee, and co-workers describe facile process that enables unprecedented control macroscale LIG. By single scanning laser on polyimide substrate, intensive pressure created by py...
The authors report on a new method for the synthesis of graphene, a mono-layer of carbon atoms arranged in a honey comb lattice, and the assessment of the properties of obtained graphene layers using micro-Raman characterisation. Graphene was produced by a high pressure–high temperature (HPHT) growth process from the natural graphitic source material by utilising the molten Fe–Ni catalysts for ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید