نتایج جستجو برای: keywords artificial neural network

تعداد نتایج: 2868227  

2014
S. L. Mhetre

This paper proposes two methods for automatic recognition of Handwritten Devanagari Numerals. In first method, Grid features i.e. structural features are extracted and minimum distance is calculated using these features for classification. In second method, ICZ (Image Centroid Zone) & ZCZ (Zone Centroid Zone) features based on distance information are extracted and given to an already trained N...

2013
S. Mousavian M. Moghimi Mofrad

The aim of this research is to use artificial neural networks computing technology for estimating the net heating value (NHV) of crude oil by its Properties. The approach is based on training the neural network simulator uses back-propagation as the learning algorithm for a predefined range of analytically generated well test response. The network with 8 neurons in one hidden layer was selected...

S.Samavi, V. Tahani and P. Khadivi,

Routing is one of the basic parts of a message passing multiprocessor system. The routing procedure has a great impact on the efficiency of a system. Neural algorithms that are currently in use for computer networks require a large number of neurons. If a specific topology of a multiprocessor network is considered, the number of neurons can be reduced. In this paper a new recurrent neural ne...

2010
M Nirmala Devi N Mohankumar Jayalakshmi P Nair

The feed forward neural network which is a model of the cerebral neural network has in-built fault tolerance. The conventional back-propagation algorithm reduces errors between the learning examples and the output of a multilayer neural network (MNN). However, it is not assured that the MNN behaves in the same manner when faults occur. For these reasons the study of fault tolerance in artificia...

Journal: :نشریه دانشکده فنی 0
شبنم شهبازی دانشگاه صنعتی امیرکبیر عبدالرحیم جواهریان موسسه ژئوفیزیک مجتبی محمدو خراسانی شرکت ملی نفت

geological facies interpretation is essential for reservoir studying. the method of classification and identification seismic traces is a powerful approach for geological facies classification and distinction. use of neural networks as classifiers is increasing in different sciences like seismic. they are computer efficient and ideal for patterns identification. they can simply learn new algori...

Journal: :international journal of advanced biological and biomedical research 2014
abazar solgi feridon radmanesh heidar zarei vahid nourani

awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. therefore, the present study two hybrid models, wavelet- adaptive neural fuzzy interference system (wanfis) and wavelet- artificial neural network (wann) are used for flow prediction of gamasyab river (nahavand, hamedan, iran...

Journal: :journal of computer and robotics 0
mohammad talebi motlagh department of systems and control, industrial control center of excellence, k.n.toosi university of technology, tehran, iran hamid khaloozadeh department of systems and control, industrial control center of excellence, k.n.toosi university of technology, tehran, iran

modelling and forecasting stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. this nonlinearity affects the efficiency of the price characteristics. using an artificial neural network (ann) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

A.R Mardookhpour

In order to determine hydrological behavior and water management of Sepidroud River (North of Iran-Guilan) the present study has focused on stream flow prediction by using artificial neural network. Ten years observed inflow data (2000-2009) of Sepidroud River were selected; then these data have been forecasted by using neural network. Finally, predicted results are compared to the observed dat...

Journal: :آب و خاک 0
احمدرضا پیله ور شهری شمس الله ایوبی حسین خادمی

abstract spatial prediction of soil organic carbon is a crucial proxy to manage and conserve natural resources, monitoring co2 and preventing soil erosion strategies within the landscape, regional, and global scale. the objectives of this study was to evaluate capability of artificial neural network and multivariate linear regression models in order to predict soil organic carbon using terrain ...

Journal: :مهندسی قدرت ایران 0
javad mahmoudi sharif university, tehran, iran majid jamil material and energy research center (merc), karaj, iran hossein balaghi department of mechanical engineering of sharif university , tehran, iran

in recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. for solving this problem, some approaches have been presented. recently, the artificial neural networks (ann) as a heuristic method has more applications for this propose. in this paper, short-term (1 hour) and mid-term (24...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید