Proving a conjecture of Talagrand, fractional version the ``expectation-threshold" Kalai and second author, we show that $p_c (\mathcal{F}) = O(q_f(\mathcal{F})\mathrm{log}\ \ell(\mathcal{F}))$ for any increasing family $\mathcal{F}$ on finite set $X$, where $p_c(\mathcal{F})$ $q_f(\mathcal{F})$ are threshold ``fractional expectation-threshold" $\mathcal{F}$, $\ell(\mathcal{F})$ is maximum size...