نتایج جستجو برای: ideal graph of a commutative ring
تعداد نتایج: 23297436 فیلتر نتایج به سال:
let $r$ be a commutative noetherian ring with non-zero identity, $fa$ an ideal of $r$, and $x$ an $r$--module. here, for fixed integers $s, t$ and a finite $fa$--torsion $r$--module $n$, we first study the membership of $ext^{s+t}_{r}(n, x)$ and $ext^{s}_{r}(n, h^{t}_{fa}(x))$ in the serre subcategories of the category of $r$--modules. then, we present some conditions which ensure the exi...
in this paper, for a complete lattice l, we introduce interval-valued l-fuzzy ideal (prime ideal) of a near-ring which is an extended notion of fuzzy ideal (prime ideal) of a near-ring. some characterization and properties are discussed.
let g=(v,e) be a graph with vertex set v and edge set e.for two vertices u,v of g ,the closed interval i[u,v] ,consists of u,v and all vertices lying in some u-v geodesic in g.if s is a set of vertices of g then i[s]is the union of all sets i[u,v]for u,v ? s. if i[s]=v(g) , then s is a geodetic set for g.the geodetic number g(g) is the minimum cardinality of geodetic set.the maximum cardinalit...
Let $R$ be a 2-torsion free semiprime ring with extended centroid $C$, $U$ the Utumi quotient ring of $R$ and $m,n>0$ are fixed integers. We show that if $R$ admits derivation $d$ such that $b[[d(x), x]_n,[y,d(y)]_m]=0$ for all $x,yin R$ where $0neq bin R$, then there exists a central idempotent element $e$ of $U$ such that $eU$ is commutative ring and $d$ induce a zero derivation on $(1-e)U$. ...
An element in a ring is called clean if it may be written as a sum of a unit and idempotent. The ring itself is called clean if every element is clean. Recently, Anderson and Camillo (Anderson, D. D., Camillo, V. (2002). Commutative rings whose elements are a sum of a unit and an idempotent. Comm. Algebra 30(7):3327–3336) has shown that for commutative rings every von-Neumann regular ring as we...
let $r$ be an associative ring with identity and $z^*(r)$ be its set of non-zero zero divisors. the zero-divisor graph of $r$, denoted by $gamma(r)$, is the graph whose vertices are the non-zero zero-divisors of $r$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$. in this paper, we bring some results about undirected zero-divisor graph of a monoid ring ov...
The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...
Let $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring $R=K[x_1,ld...
Let $R$ be a 2-torsion free ring and $U$ be a square closed Lie ideal of $R$. Suppose that $alpha, beta$ are automorphisms of $R$. An additive mapping $delta: R longrightarrow R$ is said to be a Jordan left $(alpha,beta)$-derivation of $R$ if $delta(x^2)=alpha(x)delta(x)+beta(x)delta(x)$ holds for all $xin R$. In this paper it is established that if $R$ admits an additive mapping $G : Rlongrigh...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید