نتایج جستجو برای: hilbert algebra

تعداد نتایج: 92718  

1999
Nick Halmagyi NICK HALMAGYI

In a previous paper we defined the concept of an affinized projective variety and its associated Hilbert series. We computed the Hilbert series for varieties associated to quadratic monomial ideals. In this paper we show how to apply these results to affinized flag varieties. We discuss various examples and conjecture a correspondence between the Hilbert series of an affinized flag variety and ...

1996
J. A. Mignaco C. Sigaud A. R. da Silva F. J. Vanhecke

We describe the classical Schwinger model as a study of the pro-jective modules over the algebra of complex-valued functions on the sphere. On these modules, classified by π 2 (S 2), we construct her-mitian connections with values in the universal differential envelope which leads us to the Schwinger model on the sphere. The Connes-Lott program is then applied using the Hilbert space of complex...

2003
D. Mauro

In this paper we find a simple rule to reproduce the algebra of quantum observables using only the commutators and operators which appear in the Koopman-von Neumann (KvN) formulation of classical mechanics. The usual Hilbert space of quantum mechanics becomes embedded in the KvN Hilbert space: in particular it turns out to be the subspace on which the quantum positions Q and momenta P act irred...

2006
Michael Skeide

With every E0–semigroup (acting on the algebra of of bounded operators on a separable infinite-dimensional Hilbert space) there is an associated Arveson system. One of the most important results about Arveson systems is that every Arveson system is the one associated with an E0–semigroup. In these notes we give a new proof of this result that is considerably simpler than the existing ones and a...

2009
Michael Skeide

We show that every (continuous) faithful product system admits a (continuous) faithful nondegenerate representation. For Hilbert spaces this is equivalent to Arveson’s result that every Arveson system comes from an E0–semigroup. We point out that for Hilbert modules this is not so. As applications we show a C–algebra version of a result for von Neumann algebras due to Arveson and Kishimoto, and...

2008
Olivier Brunet

We present a general way to define a topology on orthomodular lattices. We show that in the case of a Hilbert lattice, this topology is equivalent to that induced by the metrics of the corresponding Hilbert space. Moreover, we show that in the case of a boolean algebra, the obtained topology is the discrete one. Thus, our construction provides a general tool for studying orthomodular lattices b...

2005
S. H. KULKARNI M. N. N. NAMBOODIRI Joseph A. Ball N. N. NAMBOODIRI

We give an elementary proof of a result which characterizes onto *-isomorphisms of the algebra BL(H) of all the bounded linear operators on a Hilbert space H. A known proof of this result (Arveson, 1976) relies on the theory of irreducible representations of C∗-algebras, whereas the proof given by us is based on elementary properties of operators on a Hilbert space which can be found in any int...

2010
I. Chajda R. Halaš Y. B. Jun

The properties of deductive systems in Hilbert algebras are treated. If a Hilbert algebra H considered as an ordered set is an upper semilattice then prime deductive systems coincide with meet-irreducible elements of the lattice DedH of all deductive systems on H and every maximal deductive system is prime. Complements and relative complements of DedH are characterized as the so called annihila...

2003
Ronald G. Douglas

We determine the ideal structure of the Toeplitz C∗-algebra on the bidisk 0 Introduction A large part of doing research in mathematics is asking the right question. Posing a timely question can trigger thought and provoke insights, even when the matter has no good resolution. That is what happened in the case at hand. After devoting much time to the study of Hilbert modules and quotient Hilbert...

2003
MARCEL DE JEU

We show that the image of a commutative monotone sequentially complete C∗-algebra, under a sequentially normal morphism, is again a monotone sequentially complete C-algebra, and also a monotone sequentially closed C∗-subalgebra. As a consequence, the image of an algebra of this type, under a sequentially normal representation in a separable Hilbert space, is strongly closed. In the case of a un...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->