نتایج جستجو برای: fuzzy clustering algorithm
تعداد نتایج: 892692 فیلتر نتایج به سال:
The image segmentation performance of clustering algorithms is highly dependent on the features used and the type of objects contained in the image, which limits the generalization ability of such algorithms. As a consequence, a fuzzy image segmentation using suppressed fuzzy c-means clustering (FSSC) algorithm was proposed that merged the initially segmented regions produced by a fuzzy cluster...
We propose a new clustering algorithm satisfying requirements for the post-clustering algorithms as many as possible. The proposed “Fuzzy Concept ART” is the form of combining the concept vector having some advantages in document clustering with Fuzzy ART known as real-time clustering algorithms.
Software defects detection is one of the most important challenges of software development and it is the most prohibitive process in software development. The early detection of fault-prone modules helps software project managers to allocate the limited cost, time, and effort of developers for testing the defect-prone modules more intensively. In this paper, according to the importance of soft...
While focusing on document clustering, this work presents a fuzzy semi-supervised clustering algorithm called fuzzy semi-Kmeans. The fuzzy semi-Kmeans is an extension of K-means clustering model, and it is inspired by an EM algorithm and a Gaussian mixture model. Additionally, the fuzzy semi-Kmeans provides the flexibility to employ different fuzzy membership functions to measure the distance b...
The present work introduce a novel fuzzy approach to deal with the problem of parameter selection in the Evolutionay Computation EC Algorithms. In our approach a fuzzy clustering algorithm is used instead of a rule based system.The Fuzzy clustering gives freedom to the genetic algorithm to evolve simultaneously with the EC population.The crossover and mutation rates are optimized dynamically in...
Fuzzy clustering is a widely used approach for data classification by using the fuzzy set theory. The probability measure and the possibility measure are two popular measures which have been used in the fuzzy c-means algorithm (FCM) and the possibilistic clustering algorithms (PCAs), respectively. However, the numerical experiments revealed that FCM and its derivatives lack the intuitive concep...
The management and analysis of big data has been identified as one of the most important emerging needs in recent years. This is because of the sheer volume and increasing complexity of data being created or collected. Current clustering algorithms can not handle big data, and therefore, scalable solutions are necessary. Since fuzzy clustering algorithms have shown to outperform hard clustering...
Aiming at improving the well-known fuzzy compactness and separation algorithm (FCS), this paper proposes a new clustering algorithm based on feature weighting fuzzy compactness and separation (WFCS). In view of the contribution of features to clustering, the proposed algorithm introduces the feature weighting into the objective function. We first formulate the membership and feature weighting, ...
With the rapid advances of microarray technologies, large amounts of high-dimensional gene expression data are being generated, which poses significant computational challenges. A first step towards addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. A ...
This paper presents a kernel fuzzy clustering with a novel differential harmony search algorithm to coordinate with the diversion scheduling scheme classification. First, we employed a self-adaptive solution generation strategy and differential evolution-based population update strategy to improve the classical harmony search. Second, we applied the differential harmony search algorithm to the ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید