نتایج جستجو برای: frequent itemset

تعداد نتایج: 127158  

2012
Thomas Bernecker Hans-Peter Kriegel Matthias Renz Florian Verhein Andreas Züfle

Frequent itemset mining in uncertain transaction databases semantically and computationally di ers from traditional techniques applied on standard (certain) transaction databases. Uncertain transaction databases consist of sets of existentially uncertain items. The uncertainty of items in transactions makes traditional techniques inapplicable. In this paper, we tackle the problem of nding proba...

2016
Hartej Singh Vinay Dwivedi J. Han J. Pei J. S. Park M. S. Chen

Association Rule mining is a sub-discipline of data mining. Apriori algorithm is one of the most popular association rule mining technique. Apriori technique has a disadvantage that before generating a maximal frequent set it generates all possible proper subsets of maximal set. Therefore it is very slow as it requires many database scans before generating a maximal frequent itemset In the meth...

2003
Chris Giannella Jiawei Han Edward Robertson Chao Liu

Mining frequent itemsets over a stream of transactions presents di cult new challenges over traditional mining in static transaction databases. Stream transactions can only be looked at once and streams have a much richer frequent itemset structure due to their inherent temporal nature. We examine a novel data structure, an FP-stream, for maintaining information about itemset frequency historie...

2006
Jouni K. Seppänen

Frequent itemsets are one of the best known concepts in data mining, and there is active research in itemset mining algorithms. An itemset is frequent in a database if its items co-occur in sufficiently many records. This thesis addresses two questions related to frequent itemsets. The first question is raised by a method for approximating logical queries by an inclusion-exclusion sum truncated...

2009
Yoones Asgharzadeh Sekhavat Mohammad Fathian

Privacy Preserving Data Mining (PPDM) algorithms attempt to reduce the injuries to privacy caused by malicious parties during the rule mining process. Usually, these algorithms are designed for the semi-honest model, where participants do not deviate from the protocol. However, in the real-world, malicious parties may attempt to obtain the secret values of other parties by probing attacks or co...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید