نتایج جستجو برای: ensemble method
تعداد نتایج: 1663422 فیلتر نتایج به سال:
Collective motions in biological macromolecules have been shown to be important for function. The most important collective motions occur on slow time scales, which poses a sampling problem in dynamic simulation of biomolecules. We present a novel method for efficient conformational sampling. The method combines the simulation of an ensemble of concurrent trajectories with restraints acting on ...
The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applicatio...
This paper presents a method for improved ensemble learning, by treating the optimization of an ensemble of classifiers as a compressed sensing problem. Ensemble learning methods improve the performance of a learned predictor by integrating a weighted combination of multiple predictive models. Ideally, the number of models needed in the ensemble should be minimized, while optimizing the weights...
architecture has been always recognized as a framework which is influenced by social beliefs, traditions and interactions and furthermore affects individual soul and tendency. therefore it is impossible to analyze and consequently identify an architectural artifact if not accompanied by analysis of intellectual fundamentals of its contemporary society. the ensemble of sheikh safi al-din which i...
In ensemble methods the aggregation of multiple unstable classifiers often leads to reduce the misclassification rates substantially in many applications and benchmark classification problems. We propose here a new ensemble, “Double SVMBagging”, which is a variant of double bagging. In this ensemble method we used the support vector machine as the additional classifiers, built on the out-of-bag...
In this work, various methods for the estimation of the parameter uncertainty and the covariance between the parameters and the state variables are investigated using the local ensemble transform Kalman filter (LETKF). Two methods are compared for the estimation of the covariances between the state variables and the parameters: one using a single ensemble for the simultaneous estimation of mode...
The application of Machine Learning to cheminformatics is a large and active field of research, but there exist few papers which discuss whether ensembles of different Machine Learning methods can improve upon the performance of their component methodologies. Here we investigated a variety of methods, including kernel-based, tree, linear, neural networks, and both greedy and linear ensemble met...
Though many cluster ensemble approaches came forward as a potential and dominant method for enhancing the robustness, stability and the quality of individual clustering systems, it is intensely observed that this approach in most cases generate a final data partition with deficient information. The primary ensemble information matrix generated in the traditional cluster ensemble approaches resu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید