نتایج جستجو برای: eeg signals

تعداد نتایج: 217307  

2015
VAISHNAVI L. KAUNDANYA ANITA PATIL ASHISH PANAT

This paper describes a method for automatic classification of different human emotions obtained using Electroencephalograph (EEG) signals. The human brain is a complex system. The superimposition of the diverse processes in the brain is recognized through EEG signals. Electroencephalographic measurements are commonly used in medical applications and in the research areas to study and analyse di...

2013
E. Parvinnia M. Zolghadri Jahromi R. Boostani

ss as: Pa aud Un Abstract Electroencephalogram (EEG) signals are often used to diagnose diseases such as seizure, alzheimer, and schizophrenia. One main problem with the recorded EEG samples is that they are not equally reliable due to the artifacts at the time of recording. EEG signal classification algorithms should have a mechanism to handle this issue. It seems that using adaptive classifie...

Abstract: The purpose of this study was to apply recurrence plots on event related potentials (ERPs) recorded during memory recognition tests. EEG signals recorded during memory retrieval in four scalp region were used. Two most important ERP’s components corresponding to memory retrieval, FN400 and LPC, were detected in recurrence plots computed for single-trial EEGs. In addition, the RQA was ...

2017
Youjun Li Jiajin Huang Haiyan Zhou Ning Zhong

The aim of this study is to recognize human emotions by electroencephalographic (EEG) signals. The innovation of our research methods involves two aspects: First, we integrate the spatial characteristics, frequency domain, and temporal characteristics of the EEG signals, and map them to a two-dimensional image. With these images, we build a series of EEG Multidimensional Feature Image (EEG MFI)...

2013
Puneet Mishra Sunil Kumar Singla

In the modern world of automation, biological signals, especially Electroencephalogram (EEG) and Electrocardiogram (ECG), are gaining wide attention as a source of biometric information. Earlier studies have shown that EEG and ECG show versatility with individuals and every individual has distinct EEG and ECG spectrum. EEG (which can be recorded from the scalp due to the effect of millions of n...

Journal: :Journal of neurophysiology 2010
Joseph T Gwin Klaus Gramann Scott Makeig Daniel P Ferris

Although human cognition often occurs during dynamic motor actions, most studies of human brain dynamics examine subjects in static seated or prone conditions. EEG signals have historically been considered to be too noise prone to allow recording of brain dynamics during human locomotion. Here we applied a channel-based artifact template regression procedure and a subsequent spatial filtering a...

Journal: :Physical review. E, Statistical, nonlinear, and soft matter physics 2007
Shi-Min Cai Zhao-Hui Jiang Tao Zhou Pei-Ling Zhou Hui-Jie Yang Bing-Hong Wang

In this paper, we investigate the dynamical properties of electroencephalogram (EEG) signals of humans in sleep. By using a modified random walk method, we demonstrate that scale-invariance is embedded in EEG signals after a detrending procedure is applied. Furthermore, we study the dynamical evolution of the probability density function (PDF) of the detrended EEG signals by nonextensive statis...

2011
Lun-De Liao I-Jan Wang Sheng-Fu Chen Jyh-Yeong Chang Chin-Teng Lin

In the present study, novel dry-contact sensors for measuring electro-encephalography (EEG) signals without any skin preparation are designed, fabricated by an injection molding manufacturing process and experimentally validated. Conventional wet electrodes are commonly used to measure EEG signals; they provide excellent EEG signals subject to proper skin preparation and conductive gel applicat...

Journal: :Acta neurobiologiae experimentalis 1999
W Klonowski W Jernajczyk K Niedzielska A Rydz R Stepień

Since electroencephalographic (EEG) signal may be considered chaotic, Nonlinear Dynamics and Deterministic Chaos Theory may supply effective quantitative descriptors of EEG dynamics and of underlying chaos in the brain. We have used Karhunen-Loeve decomposition of the covariance matrix of the EEG signal to analyse EEG signals of 4 healthy subjects, under drug-free condition and under the influe...

Journal: :Neuroscience letters 2014
Thierry Castermans Matthieu Duvinage Guy Cheron Thierry Dutoit

This paper presents a spectral and time-frequency analysis of EEG signals recorded on seven healthy subjects walking on a treadmill at three different speeds. An accelerometer was placed on the head of the subjects in order to record the shocks undergone by the EEG electrodes during walking. Our results indicate that up to 15 harmonics of the fundamental stepping frequency may pollute EEG signa...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید