نتایج جستجو برای: domain fdtd method in 2d
تعداد نتایج: 17293749 فیلتر نتایج به سال:
Perfectly matched layers (PML’s) are derived for cylindrical and spherical finite-difference time-domain (FDTD) grids. The formulation relies on the complex coordinate stretching approach. Two-dimensional (2-D) cylindrical and three-dimensional (3-D) spherical staggered-grid FDTD codes are written based on the time-domain versions of the equations. Numerical simulations validate the formulation...
In this paper, an ideal cylindrical metamaterial invisibility cloak with infinite-length which its electric permittivity and magnetic permeability mapped to the Drude dispersion model is simulated. The sinusoidal plane waves with microwave frequencies used as sources. To this end, the dispersive finite-difference time-domain method (FDTD) used with Convolutional Perfectly Matched Layered (CPML)...
The alternating direction implicit (ADI) method is an attractive option to use in avoiding the CourantFriedrichs-Lewy (CFL) condition that limits the size of the time step required by explicit finite-difference time-domain (FDTD) methods for stability. Implicit methods like Crank-Nicholson offer the same advantages as ADI methods but they do not rely on simple, one-dimensional, tridiagonal syst...
The programmable graphics processing unit (GPU) is employed to accelerate the unconditionally stable Crank-Nicolson finite-difference time-domain (CN-FDTD) method for the analysis of microwave circuits. In order to efficiently solve the linear system from the CN-FDTD method at each time step, both the sparse matrix vector product (SMVP) and the arithmetic operations on vectors in the bi-conjuga...
Lightning protection system (LPS) for wind power generation has become an important public issue due to greatly increasing installations of wind turbines (WTs) worldwide. Grounding system is one of the most important components required for appropriate LPS for WTs. Although the finite-difference time-domain (FDTD) method for solving Maxwell`s equations is difficult for computing earth potential...
We present a simplified numerical method to solve for the current distribution in a V-shaped antenna excited by an electric field with arbitrary polarization. The scattered far-field amplitude, phase, and polarization of the antennas are extracted. The calculation technique presented here is an efficient method for probing the large design parameter space of such antennas, which have been propo...
A three-dimensional (3-D) time-domain numerical scheme for simulation of ground penetrating radar (GPR) on dispersive and inhomogeneous soils with conductive loss is described. The finite-difference time-domain (FDTD) method is used to discretize the partial differential equations for time stepping of the electromagnetic fields. The soil dispersion is modeled by multiterm Lorentz and/or Debye m...
Finite-difference time-domain (FDTD) grids are often described as being divergence-free in a source-free region of space. However, in the presence of a source, the continuity equation states that charges may be deposited in the grid, while Gauss’s law dictates that the fields must diverge from any deposited charge. The FDTD method will accurately predict the (diverging) fields associated with c...
The hybrid implicit-explicit finite-difference time-domain (HIE-FDTD) method is a weakly conditionally stable (FDTD) method. time step size of the HIE-FDTD only confined by two coarse spatial cell sizes, so it widely used in simulation electromagnetic targets with fine structures along one direction. In this work, basic iterative formulations are proposed approximating FDTD these formulations, ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید