نتایج جستجو برای: cooperative planning

تعداد نتایج: 266149  

2006
Laura E. Ray Devin Brande John Murphy James Joslin

This paper presents a distributed control framework for groups of wheeled mobile robots with significant (nonnegligible) vehicle dynamics driving on terrain with variable performance characteristics. A dynamic model of a high-speed robot is developed with attention to representation of wheelterrain performance characteristics. Using this model, aspects of distributed, cooperative control on unk...

Journal: :اقتصاد و توسعه کشاورزی 0
سمیه لطیفی احمد یعقوبی فرانی

introduction: today the consumption of animal protein has been allocated a special place in human nutrition. poultry cooperatives have an important role in protein production. given the significance of producing animal products and the capabilities that the poultry cooperatives possess in this regard as well as considering the macroeconomic policies of governments respecting developing the coop...

Journal: :IEEE Trans. Robotics and Automation 2002
Randal W. Beard Timothy W. McLain Michael A. Goodrich

This paper presents an end-to-end solution to the cooperative control problem represented by the scenario where unmanned air vehicles (UAVs) are assigned to transition through known target locations in the presence of dynamic threats. The problem is decomposed into the subproblems of: 1) cooperative target assignment; 2) coordinated UAV intercept; 3) path planning; 4) feasible trajectory genera...

2003
Guilherme A. S. Pereira Vijay Kumar Mario F. M. Campos

This paper addresses the problem of planning and controlling the actions of groups of mobile robots during the execution of cooperative tasks. We propose a general framework that transforms several cooperative tasks to the same basic problem, thus enabling a single solution for all of them. Using this approach a single team of robots is capable to perform many different tasks by providing each ...

Journal: :Transportation Research Record: Journal of the Transportation Research Board 2020

Journal: :Journal of Dynamic Systems Measurement and Control-transactions of The Asme 2021

Abstract This work considers the cooperative trajectory-planning problem along a double lane change scenario for autonomous driving. In this paper, we develop two frameworks to solve based on distributed model predictive control (MPC). The first approach solves single nonlinear MPC problem. general idea is introduce collision cost function in optimization at planning task achieve smooth and bou...

Journal: :Information 2021

This paper describes a bioinspired neural-network-based approach to solve coverage planning problem for fleet of unmanned aerial vehicles exploring critical areas. The main goal is fully cover the map, maintaining uniform distribution on and avoiding collisions between other obstacles. specific task suitable surveillance applications, where in map permits them reach any position as fast possibl...

Journal: :Drones 2023

This paper proposes a fast cooperative path planning algorithm for multiple UAVs that satisfies the time–space constraints, namely, RRT* based on heuristic decentralized prioritized (HDP-TSRRT*), which takes into account simultaneous arrival time variables of each UAV as well avoidance conflicts and threats. HDP-TSRRT* is hierarchical decoupling algorithm. First, all pre-paths are planned simul...

2012
Alejandro Torreño Eva Onaindia Oscar Sapena

Multi-agent planning (MAP) approaches have been typically conceived for independent or loosely-coupled problems to enhance the benefits of distributed planning between autonomous agents as solving this type of problems require less coordination between the agents’ sub-plans. However, when it comes to tightlycoupled agents’ tasks, MAP has been relegated in favour of centralized approaches and li...

1997
Ella M. Atkins Edmund H. Durfee Kang G. Shin

To react appropriately in hard real-time environments, a system must either employ fast dynamic planning or recall a pre-built reactive response. For complex problems, real-time, accurate dynamic planning may be impossible, and the complete set of possible reactions may be too large to build and store in advance. In this paper, we propose combining offiine and online planning such that a set of...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->