We show that if an inclusion of finite groups H ≤ G of index prime to p induces a homeomorphism of mod p cohomology varieties, or equivalently an F–isomorphism in mod p cohomology, then H controls p–fusion in G, if p is odd. This generalizes classical results of Quillen who proved this when H is a Sylow p–subgroup, and furthermore implies a hitherto difficult result of Mislin about cohomology i...