نتایج جستجو برای: cartesian closed category
تعداد نتایج: 209179 فیلتر نتایج به سال:
In this paper we investigate effective descent morphisms in categories of reflexive and transitive lax algebras. We show in particular that open and proper maps are effective descent, result that extends the corresponding results for the category of topological spaces and continuous maps. Introduction A morphism p : E → B in a category C with pullbacks is called effective descent if it allows a...
We introduce the notion of quasi-zero-dimensionality as a substitute for the notion of zero-dimensionality, motivated by the fact that the latter behaves badly in the realm of qcb-spaces. We prove that the category QZ of quasi-zero-dimensional qcb0-spaces is cartesian closed. Prominent examples of spaces in QZ are the spaces of the Kleene-Kreisel continuous functionals equipped with the respect...
Fitch-style modal deduction, in which modalities are eliminated by opening a subordinate proof, and introduced by shutting one, were investigated in the 1990s as a basis for lambda calculi. We show that such calculi have good computational properties for a variety of intuitionistic modal logics. Semantics are given in cartesian closed categories equipped with an adjunction of endofunctors, with...
A continuous predicate on a domain, or more generally a topological space, can be concretely described as an open or closed set, or less obviously, as the set of all predicates consistent with it. Generalizing this scenario to quantitative predicates, we obtain under certain well-understood hypotheses an isomorphism between continuous functions on points and supremum preserving functions on ope...
Perhaps the most important and striking fact of domain theory is that important categories of domains are cartesian closed. This means that the category has a terminal object, finite products, and exponents. The only problematic part for domains is the exponent, which in this setting means the space of continuous functions. Cartesian closed categories of domains are well understood and the unde...
In this paper we initiate the study of discrete random variables over domains. Our work is inspired by work of Daniele Varacca, who devised indexed valuations as models of probabilistic computation within domain theory. Our approach relies on new results about commutative monoids defined on domains that also allow actions of the non-negative reals. Using our approach, we define two such familie...
We introduce a new cartesian closed category of two-level arenas and innocent strategies to model intersection types that are refinements of simple types. Intuitively a property (respectively computation) on the upper level refines that on the lower level. We prove Subject Expansion—any lower-level computation is closely and canonically tracked by the upper-level computation that lies over it—w...
We introduce various notions of partial topos, i.e. “topos without terminal object”. The strongest one, called local topos, is motivated by the key examples of finite trees and sheaves with compact support. Local toposes satisfy all the usual exactness properties of toposes but are neither cartesian closed nor have a subobject classifier. Examples for the weaker notions are local homeomorphisms...
We apply the theory of generalised concrete data structures or gCDSs to construct a cartesian closed category of concrete array structures with explicit data layout The technical novelty is the array gCDS preserved by exponentiation whose isomorphisms relate higher order objects to their local parts This work is part of our search of semantic foundations for data parallel functional programming
Non-well-founded trees are used in mathematics and computer science, for modelling non-well-founded sets, as well as non-terminating processes or infinite data structures. Categorically, they arise as final coalgebras for polynomial endofunctors, which we call M-types. We derive existence results for M-types in locally cartesian closed pretoposes with a natural numbers object, using their inter...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید