Let ∆ be a simplicial complex and I∆ its Stanley–Reisner ideal. It has been conjectured that, for each i and j, the graded Betti number βii+j(I∆) of I∆ is smaller than or equal to that of I∆c , where ∆ c is a combinatorial shifted complex of ∆. In the present paper the conjecture will be proved affirmatively. In particular the inequalities βii+j(I∆) ≤ βii+j(I∆lex) hold for all i and j, where ∆ ...