نتایج جستجو برای: bernsteins polynomials
تعداد نتایج: 37881 فیلتر نتایج به سال:
We show combinatorially that the higher-order matching polynomials of several families of graphs are d-orthogonal polynomials. The matching polynomial of a graph is a generating function for coverings of a graph by disjoint edges; the higher-order matching polynomial corresponds to coverings by paths. Several families of classical orthogonal polynomials—the Chebyshev, Hermite, and Laguerre poly...
The relativistic Hermite polynomials (RHP) were introduced in 1991 by Aldaya et al. [3] in a generalization of the theory of the quantum harmonic oscillator to the relativistic context. These polynomials were later related to the more classical Gegenbauer (or more generally Jacobi) polynomials in a study by Nagel [4]. For this reason, they do not deserve any special study since their properties...
The aim of this paper is to construct generating functions for q-beta polynomials. By using these generating functions, we define the q -beta polynomials and also derive some fundamental properties of these polynomials. We give some functional equations and partial differential equations (PDEs) related to these generating functions. By using these equations, we find some identities related to t...
We show how the Tutte polynomial of a plane graph can be evaluated as the "homfly" polynomial of an associated oriented link. Then we discuss some consequences for the partition function of the Potts model, the Four Color Problem and the time complexity of the computation of the homfly polynomial.
Polynomial solutions to the generalized Lamé equation, the Stieltjes polynomials, and the associated Van Vleck polynomials have been studied since the 1830’s, beginning with Lamé in his studies of the Laplace equation on an ellipsoid, and in an ever widening variety of applications since. In this paper we show how the zeros of Stieltjes polynomials are distributed and present two new interlacin...
The recently introduced chain and sheaf polynomials of a graph are shown to be essentially equivalent to a weighted version of the Tutte polynomial. c © 2002 Elsevier Science B.V. All rights reserved.
We investigate the zeros of a family of hypergeometric polynomials 2F1(−n,−x; a; t), n ∈ N that are known as the Meixner polynomials for certain values of the parameters a and t. When a = −N, N ∈ N and t = p , the polynomials Kn(x; p,N) = (−N)n2F1(−n,−x;−N; p ), n = 0, 1, . . .N, 0 < p < 1 are referred to as Krawtchouk polynomials. We prove results for the zero location of the orthogonal polyno...
In this paper we introduce multivariate hyperedge elimination polynomials and multivariate chromatic polynomials for hypergraphs. The first set of polynomials is defined in terms of a deletion-contraction-extraction recurrence, previously investigated for graphs by Averbouch, Godlin, and Makowsky. The multivariate chromatic polynomial is an equivalent polynomial defined in terms of colorings, a...
We begin by classifying all solutions of two natural recurrences that Bernstein polynomials satisfy. The first scheme gives a natural characterization of Stancu polynomials. In Section 2, we identify the Bernstein polynomials as coefficients in the generating function for the elementary symmetric functions, which gives a new proof of total positivity for Bernstein polynomials, by identifying th...
In this paper, exact formulas for the dependence, independence, vertex cover and clique polynomials of the power graph and its supergraphs for certain finite groups are presented.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید