نتایج جستجو برای: arima garch

تعداد نتایج: 7234  

1998
Marwan Krunz Armand Makowski

Statistical evidence suggests that the autocorrelation function of a compressed-video sequence is better captured by p(k) = e–~fi than by p(k) = k–fi = e–~’og k (long-range dependence) or p(k) = e-~k (Markovian). A video model with such a correlation structure is introduced based on the so-called M/G/ca input processes. Though not Markovian, the model exhibits short-range dependence. Using the ...

Journal: :Chemosphere 2005
C Dueñas M C Fernández S Cañete J Carretero E Liger

Stochastic models that estimate the ground-level ozone concentrations in air at an urban and rural sampling points in South-eastern Spain have been developed. Studies of temporal series of data, spectral analyses of temporal series and ARIMA models have been used. The ARIMA model (1,0,0) x (1,0,1)24 satisfactorily predicts hourly ozone concentrations in the urban area. The ARIMA (2,1,1) x (0,1,...

1998
AIDAN MEYLER GEOFF KENNY TERRY QUINN

This paper outlines the practical steps which need to be undertaken to use autoregressive integrated moving average (ARIMA) time series models for forecasting Irish inflation. A framework for ARIMA forecasting is drawn up. It considers two alternative approaches to the issue of identifying ARIMA models the Box Jenkins approach and the objective penalty function methods. The emphasis is on forec...

Journal: :Technometrics : a journal of statistics for the physical, chemical, and engineering sciences 2005
A. Ian McLeod E. R. Vingilis

In many intervention analysis applications, time series data may be expensive or otherwise difficult to collect. In this case the power function is helpful, because it can be used to determine the probability that a proposed intervention analysis application will detect a meaningful change. Assuming that an underlying autoregressive integrated moving average (ARIMA) or fractional ARIMA model is...

2002
Michael S. Haigh Matthew T. Holt

This paper presents an effective way of combining two popular, yet distinct approaches used in the hedging literature – dynamic programming (DP) and time-series (GARCH) econometrics. Theoretically consistent yet realistic and tractable models are developed for traders interested in hedging a portfolio. Results from a bootstrapping experiment used to construct confidence bands around the competi...

Journal: :Finance and Stochastics 2000
Wolfgang K. Härdle Christian M. Hafner

By extending the GARCH option pricing model of Duan (1995) to more exible volatility estimation it is shown that the prices of out-of-the-money options strongly depend on volatility features such as asymmetry. Results are provided for the properties of the stationary pricing distribution in the case of a threshold GARCH model. For a stock index series with a pronounced leverage eeect, simulated...

2009
Tetsuya Takaishi

We perform Markov chain Monte Carlo simulations for a Bayesian inference of the GJR-GARCH model which is one of asymmetric GARCH models. The adaptive construction scheme is used for the construction of the proposal density in the Metropolis-Hastings algorithm and the parameters of the proposal density are determined adaptively by using the data sampled by the Markov chain Monte Carlo simulation...

2010
Bei Chen

Wepropose a novel, simple, efficient and distribution-free re-sampling technique for developing prediction intervals for returns and volatilities following ARCH/GARCH models. In particular, our key idea is to employ a Box-Jenkins linear representation of an ARCH/GARCH equation and then to adapt a sieve bootstrap procedure to the non-linear GARCH framework. Our simulation studies indicate that t...

Journal: :Neurocomputing 2003
Guoqiang Peter Zhang

Autoregressive integrated moving average (ARIMA) is one of the popular linear models in time series forecasting during the past three decades. Recent research activities in forecasting with arti/cial neural networks (ANNs) suggest that ANNs can be a promising alternative to the traditional linear methods. ARIMA models and ANNs are often compared with mixed conclusions in terms of the superiorit...

Journal: :JCP 2012
Xiping Wang Ming Meng

Energy consumption time series consists of complex linear and non-linear patterns and are difficult to forecast. Neither autoregressive integrated moving average (ARIMA) nor artificial neural networks (ANNs) can be adequate in modeling and predicting energy consumption. The ARIMA model cannot deal with nonlinear relationships while the neural network model alone is not able to handle both linea...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید