Axioms of Lie algebroid are discussed. In particular, it is shown that a Lie QD-algebroid (i.e. a Lie algebra bracket on the C∞(M)-module E of sections of a vector bundle E over a manifold M which satisfies [X, fY ] = f [X, Y ] + A(X,f)Y for all X, Y ∈ E , f ∈ C∞(M), and for certain A(X,f) ∈ C∞(M)) is a Lie algebroid if rank(E) > 1, and is a local Lie algebra in the sense of Kirillov if E is a ...