Abstract The aim of the paper is to study problem $$\begin{aligned} {\left\{ \begin{array}{ll} u_{tt}+du_t-c^2\Delta u=0 \qquad &{}\text {in}\, {\mathbb {R}}\times \Omega ,\\ \mu v_{tt}- \textrm{div}_\Gamma (\sigma \nabla _\Gamma v)+\delta v_t+\kappa v+\rho u_t =0\qquad {on}\, \Gamma _1,\\ v_t =\partial _\nu u\qquad \partial _0,\\ u(0,x)=u_0(x),\quad u_t(0,x)=u_1(x) &{} \text v(0,x)=v_0...