We study integrals of the form $$\begin{aligned} \int _{-1}^1(C_n^{(\lambda )}(x))^2(1-x)^\alpha (1+x)^\beta {{\,\mathrm{\mathrm {d}}\,}}x, \end{aligned}$$ where $$C_n^{(\lambda )}$$ denotes Gegenbauer-polynomial index $$\lambda >0$$ and $$\alpha ,\beta >-1$$ . give exact formulas for their generating functions, obtain asymptotic as $$n\rightarrow \infty $$