نتایج جستجو برای: موضعا محدب
تعداد نتایج: 1183 فیلتر نتایج به سال:
تابع d.c که نام ان از تفاضل محدب گرفته شده است در واقع تفاضل دو تابع محدب پیوسته روی فضای خطی نرمدار می باشددر این پایان نامه سعی شده که شرایطی را که در آن توابع دلتا محدب پایدار می مانند را بیان کندو با بررسی وتقویت نقاط برجسته مقالات کوشش شده که ویژگی های توابع d.c برای استفاده در بهینه سازی و آنالیز هر چه بیشتر گردآوری شود.
هرگاه s مجموعه نقاط درست در چند وجهی گویایی باشد، نشان میدهیم که مجموعه های محدب s-آزاد چندوجهی هستند. این نتیجه قضیه ای از لاواز که مجموعه های محدب مشبکه آزاد ماکسیمال را توصیف می کند بسط میدهد. قضیه ما پیامدهایی در برنامه ریزی اعداد صحیح دارد. به خصوص نشان میدهیم که مجموعه های محدب s-آزاد در تناظر یک به یک با نامساوی های مینیمال هستند.
این پایان نامه شامل چهار فصل است. فصل اول شامل تعاریف و مفاهیم مقدماتی است که در فصل های دیگر مورد استفاده قرار می گیرد. همچنین بعضی قضایای مشهور بدون اثبات آورده شده اند. فصل دوم به مهتری ضعیف و توابع محدب می پردازد. فصل سوم مهتری ضعیف و توابع log-محدب را در بر می گیرد. فصل چهارم به بررسی دنباله های محدب می پردازد
معرفی تابع ستاره گون و محدب و nامین ریشه های آنها و تابع جانفسکی و زیر کلاسهایی از توابع به طور یکنواخت محدب
در این پایان نامه با معرفی سیستم فارکاش-مینکوفسکی، سیستم موضعا فارکاش- مینکوفسکی شرط تعمیم شرط اسلیتر، شرایط بهینگی را برای مسایل برنامه ریزی نیم-نامتناهی بررسی می کنیم. مسیله برنامه ریزی نیم-نامتناهی یک مسیله بهینه سازی با تعداد متناهی متغیر و تعداد نامتناهی قید است. این کاربردهایی در زمینه های متفاوت از ریاضیات اقتصاد و مهندسی دارد.
در این پایان نامه نتایج کلی درباره ی منظم درونی و منظم بیرونی بودن و گسترش اندازه های بورل ضعیف و بورل بررسی می شوند. سپس این قضایا برای اندازه هار روی یک گروه توپولوژیک موضعا فشرده به کار گرفته میشوند. گسترش های انداره هار از جنبه های مختلفی بررسی می شود.
در این پایان نامه ضمن آشنایی با نامساوی ینسن نامساوی های دیگری که به نحوی از نامساوی ینسن گرفته شده اند مورد مطالعه قرار می گیرند. ما در این جا نامساوی های بر گرفته از نامساوی ینسن را بر روی توابع محدب و m-محدب و (alfa,m)-محدب در فضای اندازه پیوسته و گسسته مورد بررسی قرار می دهیم و به کاربردهای آنها نیز اشاره خواهیم کرد
موضوع این رساله که زیرهمسازی و چند زیرهمسازی توابع محدب ژئودزیک روی خمینه های ریمانی و کیلری می باشد. شرح مقاله ای از گرین و وو در همین موضوع است که هدف نهایی آن اثبات دو قضیه راجع به زیرهمسازی توابع محدب ژئودزیک روی خمینه های ریمانی و چند زیرهمسازی توابع محدب ژئودزیک روی خمینه های کیلری است . شرح بیشتر این مطالب در متن رساله خواهد آمد.
در این پایان نامه فضای متری محدب یکنواخت، 2-محدب یکنواخت، هذلولی گون و نگاشت نامنبسط نقطه به نقطه مجانبی را معرفی می کنیم.سپس فرآیند تکرار مان اصلاح شده را روی این نگاشت تعریف می کنیم.همچنین نشان می دهیم که فرآیند تکرار مان اصلاح شده به نقطه ثابت نگاشت t همگراست.در ادامه وجودیک نقطه ثابت منحصربه فرد برای تگاشت های نامنبسط نقطه به نقطه مجانبی در فضای متری هذلولی گون محدب یکنواخت را بررسی می کنیم.
فرض کنید i یک بازه در r باشد و f : i ? r یک تابع محدب a, b ? i و a < b باشد. نامساوی زیر به نامساوی هرمیت - هادامارد برای توابع محدب مشهور است. هدف از این پایان نامه مطالعه نامساوی هرمیت - هادامارد برای توابع تعریف شده روی یک دیسک در صفحه r2 است. که در دو حالت بررسی می شود که حالت اول برای توابع محدب و حالت دوم برای توابع لیپشیش می باشد.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید