نتایج جستجو برای: روش انقباضی lasso

تعداد نتایج: 374444  

2007
Jerome Friedman Trevor Hastie Robert Tibshirani

We consider the problem of estimating sparse graphs by a lasso penalty applied to the inverse covariance matrix. Using a coordinate descent procedure for the lasso, we develop a simple algorithm— the Graphical Lasso— that is remarkably fast: it solves a 1000 node problem (∼ 500, 000 parameters) in at most a minute, and is 30 to 4000 times faster than competing methods. It also provides a concep...

1998
Yves Grandvalet Stéphane Canu

Adaptive Ridge is a special form of Ridge regression, balancing the quadratic penalization on each parameter of the model. It was shown to be equivalent to Lasso (least absolute shrinkage and selection operator), in the sense that both procedures produce the same estimate. Lasso can thus be viewed as a particular quadratic penalizer. From this observation, we derive a fixed point algorithm to c...

2014
PETER BÜHLMANN LUKAS MEIER Richard Lockhart Jonathan Taylor Ryan Tibshirani

1. A short description of the test procedure. We start by presenting the proposed test procedure in a slightly different form than in the paper. Let β̂(λ) := arg min 2‖y −Xβ‖2 + λ‖β‖1 be the Lasso estimator with tuning parameter equal to λ. The paper uses the Lasso path {β̂(λ) :λ > 0} to construct a test statistic for the significance of certain predictor variables. For a subset S ⊆ {1, . . . , p...

Journal: :Journal of Machine Learning Research 2017
Jason D. Lee Qiang Liu Yuekai Sun Jonathan E. Taylor

We devise a communication-efficient approach to distributed sparse regression in the highdimensional setting. The key idea is to average “debiased” or “desparsified” lasso estimators. We show the approach converges at the same rate as the lasso as long as the dataset is not split across too many machines, and consistently estimates the support under weaker conditions than the lasso. On the comp...

2007
Hansheng Wang

We propose a method of least squares approximation (LSA) for unified yet simple LASSO estimation. Our general theoretical framework includes ordinary least squares, generalized linear models, quantile regression, and many others as special cases. Specifically, LSA can transfer many different types of LASSO objective functions into their asymptotically equivalent least-squares problems. Thereaft...

Journal: :Journal of Computational and Graphical Statistics 2016

Journal: :Quality and Reliability Engineering International 2016

Journal: :Techniques & culture 1993

Journal: :Journal of Al-Qadisiyah for computer science and mathematics 2019

Journal: :SSRN Electronic Journal 2016

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید