نتایج جستجو برای: جبرهای تابعی باناخ

تعداد نتایج: 7027  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه خلیج فارس - دانشکده علوم پایه 1392

در این پایا‏ن نامه‏، به ‏سه مفهوم کلی میانگین پذیری‏، میانگین پذیری ضعیف و ‎-‎n‎ ‎میانگین پذیری ضعیف دوگان دوم جبر باناخ a‎ ‎‏ می پردازیم. در ابتدا مفهوم میانگین پذیری دوگان دوم جبر باناخ را بیان کرده و نشان خواهیم داد که جبر باناخ ‎ ‎a‎ ‎‏ خاصیت میانگین پذیری را از دوگان دوم خود به ارث می برد. در ادامه به بیان مفهوم آرنز منظمی نگاشت های دوخطی روی فضاهای نرم دار می پردازیم‏، سپس شرایطی را که تح...

پایان نامه :دانشگاه تربیت معلم - تهران - دانشکده ریاضی و کامپیوتر 1392

در این رساله به مطالعه جبرهای لیپ شیتس برداری مقدار می پردازیم. در آغاز، فضای مشخصه و مرز شیلوف جبرهای لیپ شیتس با مقادیر در جبرهای باناخ را بدست می آوریم. سپس به معرفی و مطالعه جبرهای لیپ شیتس چندجمله $a$-مقدار روی زیرمجموعه فشرده $k$ در صفحه ( که توسط چندجمله ای های $a$-مقدار روی $k$) تولید شده اند می پردازیم. سپس عملگرهای ترکیبی وزن دار روی فضاهای لیپ شیتس برداری مقدار را مورد مطالعه قرار د...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز 1389

میانگین پذیری دوگان دوم یک جبر باناخ aمیانگین پذیری جبر باناخaرا نتیجه می دهد.اما تاکنون مثالی ارائه نشده است که نشان دهد میانگین پذیری ضعیف دوگان دوم جبر باناخ aمیانگین پذیری ضعیف aرا نتیجه ندهد.این ویژگی برای جبر گروهی (l1(gو جبرهای فوریه (a(gزمانی که gیک گروه میانگین پذیر باشد ثابت شده است.همچنین برای جبر باناخa زمانی که a منظم آرنز باشد و هر اشتقاق از a به *aفشرده ضعیف باشد و همچنینa یک اید...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده علوم پایه 1390

در این پایان نامه به معرفی توسیع (?,?)-اشتقاق های ناکاجیما و برشار می پردازیم. روابط همولوژیکی بین مدول توسیع (?,?)-اشتقاق ناکاجیما و مدول (?,?)-اشتقاق را بررسی می کنیم. همچنین یکریختی مدول های (?,?)-اشتقاق های ناکاجیما و برشار و گسترش آن به جبرهای یکدار شده را به کمک ?-ضربگر ها مورد بررسی قرار می دهیم. انواع دیگری از این اشتقاق ها با نام های جردن و لی را معرفی کرده و مورد مطالعه قرار می دهیم. ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران) - دانشکده ریاضی و کامپیوتر 1386

در ابتدا به بررسی جبرهای نسبت بر روی عملگرهای وارون پذیر روی فضاهای هیلبرت می پردازیم و توسیعی ارایه خواهیم داد که این جبرها را روی فضاهای باناخ تعریف می کند وخواص آنها را بررسی خواهیم کرد. در فصل بعد جبری را معرفی می کنیم که به ازای هر عملگر روی فضای هیلبرت با بعد نامتناهی تعریف خواهد شد که آن را جبر طیفی می نامیم. نشان می دهیم که این جبر شامل جابجاگرهای آن عملگر است و در بسیاری از حالات این ش...

پایان نامه :دانشگاه تربیت معلم - تهران - دانشکده ریاضی و کامپیوتر 1393

در این رساله در مورد پیوستگی خودکار نگاشتهای تقریباً ضربی بین جبرهای فرشه بحث می کنیم و نتایج جالبی را بدست می آوریم. در ضمن تعمیمهای خوبی از قضیه گلفاند و قضیه جانسون که در مورد پیوستگی خودکار همریختی ها بین جبرهای باناخ هستند، ارائه می شود. در واقع ما با عوض کردن فضاهای مبدا و مقصید یک نگاشت شرایطی را ایجاد می کنیم که این نگاشت پیوسته شود. همچنین شرایطی را می توان روی خود نگاشت قرار داد که پیو...

پایان نامه :دانشگاه تربیت معلم - سبزوار - دانشکده ریاضی و کامپیوتر 1391

قضیه ی کملوس در سال 1967 برای فضاهای l1(µ) توسط کملوس مطرح گردید و کاترجی در سال 1970 این قضیه را به فضاهای lpکه (1?p<2) تعمیم داد. لینارد در سال 1993 عکس قضیه ی کملوس را برای زیر مجموعه های محدب از ( l1(µمورد بررسی قرار داد. در سال 1996 بالدر و هس دو تعمیم از قضیه ی کملوس را بیان کردند و در سال 2010 دی و لینارد این قضیه را برای فضاهای تابعی باناخ نیز ثابت کردند. سرانجام قضیه ی کملوس در سال 2...

ژورنال: :فرهنگ و اندیشه ریاضی 2007
محمد صال مصلحیان حامد اسماعیل زاده

شرح مختصر زندگانی و فعالیت های علمی استفان باناخ ریاضیدان لهستانی.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان 1390

مفهوم ?_میانگین پذیری روی جبر باناخ a را مورد مطالعه قرار می دهیم. برخی خصوصیات ویژه از ?_میانگین پذیری و همچنین بعضی خصوصیات ارثی از?_میانگین پذیری را ثابت می کنیم. بحث میانگین پذیری از جبرهای باناخ a را با نسبت دادن یک همریختی غیر صفر ?به یک تابعک خطی m? که روی زیر فضای معین از دوگان aتعریف می شود ادامه می دهیم که وجود چنین تابعک m? معادل با وجود واحد تقریبی راست کراندار در ایدآلی ماکسیمال در...

پایان نامه :دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم پایه 1392

فرض کنیدaیک جبر باناخ باشد و فرض کنید ?,?:a?aدو نگاشت خطی باشند (?,?)دو مشتق مانند d:a?aنگاشت خطی است که در شرط زیر صدق می کند d(ab)=d(a)b+ab(b)+?(a)?(b)+?(a)?(b)(a,b?a) در اینجا ما ابتدا خواص جبری این نگاشت‎ها را بررسی کرده و سپس فرمولی برای محاسبه یd^n (ab) می یابیم همچنین در این پایان نامه نشان می دهیم که اگر a یک جبر با ناخ نیم ساده باشد و یا هر مشتق از aبه توی هر باناخ a- دو مدول پیوسته...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید