نتایج جستجو برای: تقریب lda u
تعداد نتایج: 174628 فیلتر نتایج به سال:
The advent of the Social Web has provided netizens with new tools for creating and sharing, in a timeand costefficient way, their contents, ideas, and opinions with virtually the millions of people connected to the World Wide Web. This huge amount of information, however, is mainly unstructured as specifically produced for human consumption and, hence, it is not directly machine-processable. In...
BACKGROUND Usually the training set of online brain-computer interface (BCI) experiment is small. For the small training set, it lacks enough information to deeply train the classifier, resulting in the poor classification performance during online testing. METHODS In this paper, on the basis of Z-LDA, we further calculate the classification probability of Z-LDA and then use it to select the ...
در این رساله یک مسأله سهموی معکوس به منظور تعیین هم زمان توابع مجهول p(t)، q(t) و u(x,t) را در نظر می گیریم به طوری که در معادله ی: u_t=u_xx+q(t) u_x+p(t)u+f(x,t); x?(0,1), t?(0,t], (1) با شرایط اولیه-کرانه ای u(x,t)=?(x); x?[0,1], (2) u(0,t)=g_1 (t); t?(0,t] (3) u(1,t)=g_2 (t); t?(0,t] (4) و همراه با شرایط فوق اضافی: u(x^*,t)=e_1 (t), u(x^(**),t)=e_2 (t); x^*,? x?^(**)?(0,1), t?(0,t]...
در این مقاله با استفاده از دادههای تجربی گروههای CDHSWوCHORUS CCFR, NuTeV, برآنیم تا توابع توزیع ظرفیتی کوارکهای u و d را در طیف گستردهای از x و2^Q تعیین و آنها را بههمراه خطاهای همبسته در چارچوب xFitter استخراج کنیم. ما نتایج را برای توابع توزیع کوارک ظرفیتی بههمراه عدم قطعیت آنها استخراج نموده و با دیگر مدلهای مختلف مقایسه میکنیم. نتایج محاسبات ما برای ثابت جفتش...
Latent Dirichlet Allocation (LDA) is a method that can be used to generate word association networks from unstructured text documents. However, no study has yet examined the applicability of LDA for deriving product associations from user-generated content. In this work, we apply LDA on 9,529 unstructured and uncategorized McDonald’s product reviews that were crawled from a German online review...
In this paper we describe a face recognition method based on PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis). The method consists of two steps: rst we project the face image from the original vector space to a face subspace via PCA, second we use LDA to obtain a best linear clas-siier. The basic idea of combining PCA and LDA is to improve the generalization capability ...
It has been shown that the use of topic models for Information retrieval provides an increase in precision when used in the appropriate form. Latent Dirichlet Allocation (LDA) is a generative topic model that allows us to model documents using a Dirichlet prior. Using this topic model, we are able to obtain a fitted Dirichlet parameter that provides the maximum likelihood for the document set. ...
We calculate the electronic structure of several atoms and small molecules by direct minimization of the Self-Interaction Corrected Local Density Approximation (SIC-LDA) functional. To do this we first derive an expression for the gradient of this functional under the constraint that the orbitals be orthogonal and show that previously given expressions do not correctly incorporate this constrai...
Latent Dirichlet Allocation(LDA) is a popular topicmodel. Given the fact that the input corpus of LDA algorithms consists of millions to billions of tokens, the LDA training process is very time-consuming, which may prevent the usage of LDA in many scenarios, e.g., online service. GPUs have benefited modern machine learning algorithms and big data analysis as they can provide high memory bandwi...
Linear Discriminant Analysis (LDA) is a very common technique for dimensionality reduction problems as a preprocessing step for machine learning and pattern classification applications. At the same time, it is usually used as a black box, but (sometimes) not well understood. The aim of this paper is to build a solid intuition for what is LDA, and how LDA works, thus enabling readers of all leve...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید